Теплопроводность металлов от чего зависит


от чего зависит коэффициент, указываемый в таблицах

Металлы обладают большим количеством характеристик, которые определяют их эксплуатационные качества и возможность применения при изготовлении определенных изделий. Важной характеристикой всех материалов можно назвать теплопроводность. Этот показатель определяет способность материального тела к переносу тепловой энергии. Таблица теплопроводности металлов встречается в различных справочниках, может зависеть от различных их особенностей. Примером можно назвать то, что механизм переноса тепловой энергии во многом зависит от агрегатного состояния вещества.

От чего зависит показатель теплопроводности

Рассматривая теплопроводность металлов и сплавов (таблица создана не только для металлов, но и других материалов), следует учитывать, что наиболее важным показателем является коэффициент теплопроводности. Он зависит от нижеприведенных моментов:

  1. Типа материала и его химического состава. Теплопроводность железа будет существенно отличаться от соответствующего показателя алюминия, что связано с особенностями кристаллической решетки материалов и их другими свойствами.
  2. Коэффициент может изменяться при нагреве или охлаждения металла. При этом изменения могут быть существенными, так как у каждого материала есть своя точка плавления, когда молекулы начинают перестраиваться.

В таблицах для некоторых металлов и сплавов коэффициент теплопроводности указывается уже в жидкой фазе.

Сегодня на практике практически не проводят измерение рассматриваемого показателя. Это связано с тем, что коэффициент теплопроводности при несущественном изменении химического состава остается практически неизменным. Табличные данные применяются при проектировании и выполнении других расчетов.

Понятие коэффициента теплопроводности

Для обозначения рассматриваемого значения применяется символ λ - количество тепла, которое передается в единицу времени через единицу поверхности на момент повышения температуры. Это значение применяется при проведении различных расчетов.

Описание свойства теплопроводности многих металлов проводится по формуле k = 2,5·10−8σT. В этой формуле учитывается:

  1. Температура, измеряемая в Кельвинах.
  2. Показатель электропроводности.

Это соотношение больше всего подходит для определения свойств проводников на момент эксплуатации при нагреве, но в последнее время применяется и для измерения степени проводимости тепловой энергии.

Полупроводники и изоляторы обладают более низкими показателями проводимости тепла, что связано с особенностями строения их кристаллической решетки.

Когда учитывается

При рассмотрении различных свойств материалов часто уделяется внимание и теплопроводности. Этот показатель важен в нижеприведенных случаях:

  1. Когда нужно отвести тепло от объекта. Тепловая энергия может возникать из-за трения. При этом нагрев становится причиной изменения основных свойств металлов и сплавов: прочности и твердости поверхности. Примером назовем конструкцию двигателя внутреннего сгорания. В процессе хода поршня в блоке цилиндров происходит нагрев основных элементов конструкции. Из-за слишком высокого нагрева даже металлы, устойчивые к воздействию высокой температуры, начинают терять прочность и становятся более пластичными. В результате происходит изменение геометрических размеров важных элементов конструкции, и она выходит из строя. Учитывается теплопроводность и при создании режущего инструмента, обшивки самолетов или высокоскоростных поездов.
  2. Когда нужно передать тепловую энергию. Центральная система отопления основана на нагреве рабочей среды, которая после подводится к потребителю и происходит передача энергии окружающей среде. Для того чтобы повысить эффективность создаваемой системы трубы, и отопительные радиаторы изготавливаются из металлов, которые способны быстро передавать тепло.
  3. Когда нужно изолировать поверхность. Встречается ситуация, когда нужно снизить вероятность нагрева поверхности. Для этого применяются специальные материалы, которые обладают высокими изоляционными качествами. Некоторые металлы и сплавы также обладают отражающими свойствами и не нагреваются, а также не передают тепло. Примером назовем фольгу, которая часто применяется в качестве отражающего экрана. Она также изготавливается из тонкого слоя металла, обладающего низким коэффициентом проводимости.

В заключение отметим, что до развития молекулярно-кинетической теории было принято считать передачу тепловой энергии признаком перетекания гипотетического теплорода. Появление современного оборудования позволило изучить строение материалов и изучить поведение частиц при воздействии высокой температуры. Передача энергии происходит за счет быстрого движения молекул, которые начинают сталкиваться, и приводит в движение другие молекулы, находящиеся в спокойном состоянии.

Теплопроводность металлов, металлических элементов и сплавов

Теплопроводность - k - это количество тепла, передаваемого за счет единичного температурного градиента в единицу времени в установившихся условиях в направлении, нормальном к поверхности единицы площади. Теплопроводность - k - используется в уравнении Фурье.

9 0038190 9003 8 0-25
Металл, металлический элемент или сплав Температура
- t -
( o C)

Теплопроводность
- k -
(Вт / м K)
Алюминий -73 237
" 0 236
" 127 240
" 327 232
" 527 220
Алюминий - дюралюминий (94-96% Al, 3-5% Cu, следы Mg) 20 164
Алюминий - силумин (87% Al, 13% Si) 20 164
Алюминиевая бронза 0-25 70
Алюминиевый сплав 3003, прокат 0-25
Алюминиевый сплав 2014.отожженный 0-25 190
Алюминиевый сплав 360 0-25 150
Сурьма -73 30,2
" 0 25,5
" 127 21,2
" 327 18,2
" 527 16,8
Бериллий -73 301
" 0 218
" 127 161
" 327 126
" 527 107
" 727 89
" 927 73
Бериллиевая медь 25 80
Висмут -73 9.7
" 0 8,2
Бор -73 52,5
" 0 31,7
" 127 18,7
« 327 11,3
» 527 8,1
« 727 6,3
» 927 5.2
Кадмий -73 99,3
" 0 97,5
" 127 94,7
Цезий -73 36,8
" 0 36,1
Хром -73 111
" 0 94,8
" 127 87.3
" 327 80,5
" 527 71,3
" 727 65,3
" 927 62,4
Кобальт -73 122
" 0 104
" 127 84,8
Медь -73 413
" 0 401
" 127 392
" 327 383
" 527 371
" 727 357
" 927 342
Медь электролитическая (ETP) 0-25 390
Медь - Адмиралтейская латунь 20 111
Медь - алюминиевая бронза (95% Cu, 5% Al) 20 83
Медь - Бронза (75% Cu, 25% Sn) 20 26
Медь - латунь (желтая латунь) (70% Cu, 30% Zn) 20 111
Медь - патронная латунь (UNS C26000) 20 120
Медь - константан (60% Cu, 40% Ni) 20 22.7
Медь - немецкое серебро (62% Cu, 15% Ni, 22% Zn) 20 24,9
Медь - фосфористая бронза (10% Sn, UNS C52400) 20 50
Медь - красная латунь (85% Cu, 9% Sn, 6% Zn) 20 61
Мельхиор 20 29
Германий -73 96,8
" 0 66.7
" 127 43,2
" 327 27,3
" 527 19,8
" 727 17,4
" 927 17,4
Золото -73 327
" 0 318
" 127 312
" 327 304
" 527 292
" 727 278
" 927 262
Гафний -73 24.4
" 0 23,3
" 127 22,3
" 327 21,3
" 527 20,8
" 727 20,7
" 927 20,9
Hastelloy C 0-25 12
Инконель 21-100 15
Инколой 0-100 12
Индий -73 89.7
" 0 83,7
" 127 75,5
Иридий -73 153
" 0 148
" 127 144
" 327 138
" 527 132
" 727 126
" 927 120
Железо -73 94
" 0 83.5
" 127 69,4
" 327 54,7
" 527 43,3
" 727 32,6
" 927 28,2
Железо - литое 20 52
Железо - перлитное с шаровидным графитом 100 31
Кованое железо 20 59
Свинец -73 36.6
" 0 35,5
" 127 33,8
" 327 31,2
Свинец химический 0-25 35
Сурьма свинец (твердый свинец) 0-25 30
Литий -73 88,1
" 0 79.2
" 127 72,1
Магний -73 159
" 0 157
" 127 153
" 327 149
" 527 146
Магниевый сплав AZ31B 0-25 100
Марганец -73 7.17
" 0 7,68
Меркурий -73 28,9
Молибден -73 143
" 0 139
" 127 134
" 327 126
" 527 118
" 727 112
" 927 105
Монель 0-100 26
Никель -73 106
" 0 94
" 127 80.1
" 327 65,5
" 527 67,4
" 727 71,8
" 927 76,1
Никель - Кованые 0-100 61-90
Мельхиор 50-45 (константан) 0-25 20
Ниобий (колумбий) -73 52.6
" 0 53,3
" 127 55,2
" 327 58,2
" 527 61,3
" 727 64,4
" 927 67,5
Осмий 20 61
Палладий 75.5
Платина -73 72,4
" 0 71,5
" 127 71,6
" 327 73,0
« 527 75,5
» 727 78,6
» 927 82,6
Плутоний 20 8.0
Калий -73 104
" 0 104
" 127 52
Красная латунь 0-25 160
Рений -73 51
" 0 48,6
" 127 46,1
" 327 44.2
" 527 44,1
" 727 44,6
" 927 45,7
Родий -73 154
" 0 151
" 127 146
" 327 136
" 527 127
" 727 121
" 927 115
Рубидий -73 58.9
" 0 58,3
Селен 20 0,52
Кремний -73 264
" 0 168
« 127 98,9
» 327 61,9
« 527 42,2
» 727 31.2
" 927 25,7
Серебро -73 403
" 0 428
" 127 420
" 327 405
" 527 389
" 727 374
" 927 358
Натрий -73 138
" 0 135
Припой 50-50 0-25 50
Сталь - углерод, 0.5% C 20 54
Сталь - углеродистая, 1% C 20 43
Сталь - углеродистая, 1,5% C 20 36
" 400 36
" 122 33
Сталь - хром, 1% Cr 20 61
Сталь - хром, 5% Cr 20 40
Сталь - хром, 10% Cr 20 31
Сталь - хромоникель, 15% Cr, 10% Ni 20 19
Сталь - хромоникель, 20% Cr , 15% Ni 20 15.1
Сталь - Hastelloy B 20 10
Сталь - Hastelloy C 21 8,7
Сталь - никель, 10% Ni 20 26
Сталь - никель, 20% Ni 20 19
Сталь - никель, 40% Ni 20 10
Сталь - никель, 60% Ni 20 19
Сталь - хром никель, 80% никель, 15% никель 20 17
Сталь - хром никель, 40% никель, 15% никель 20 11.6
Сталь - марганец, 1% Mn 20 50
Сталь - нержавеющая, тип 304 20 14,4
Сталь - нержавеющая, тип 347 20 14,3
Сталь - вольфрам, 1% W 20 66
Сталь - деформируемый углерод 0 59
Тантал -73 57.5
" 0 57,4
" 127 57,8
" 327 58,9
" 527 59,4
" 727 60,2
" 927 61
Торий 20 42
Олово -73 73.3
" 0 68,2
" 127 62,2
Титан -73 24,5
" 0 22,4
« 127 20,4
» 327 19,4
« 527 19,7
» 727 20.7
" 927 22
Вольфрам -73 197
" 0 182
" 127 162
" 327 139
" 527 128
" 727 121
" 927 115
Уран -73 25.1
" 0 27
" 127 29,6
" 327 34
" 527 38,8
" 727 43,9
" 927 49
Ванадий -73 31,5
" 0 31.3
" 427 32,1
" 327 34,2
" 527 36,3
" 727 38,6
" 927 41,2
Цинк -73 123
" 0 122
" 127 116
" 327 105
Цирконий -73 25.2
" 0 23,2
" 127 21,6
" 327 20,7
" 527 21,6
" 727 23,7
" 927 25,7

Сплавы - температура и теплопроводность

Температура и теплопроводность для

  • Hastelloy A
  • Инконель
  • Navarich
  • Advance
  • Монель

сплавы:

.

Теплопроводность выбранных материалов и газов

Теплопроводность - это свойство материала, которое описывает способность проводить тепло. Теплопроводность может быть определена как

"количество тепла, передаваемого через единицу толщины материала в направлении, нормальном к поверхности единицы площади, за счет градиента единичной температуры в условиях устойчивого состояния"

Теплопроводность единицами являются [Вт / (м · К)] в системе СИ и [БТЕ / (час фут ° F)] в британской системе мер.

См. Также изменения теплопроводности в зависимости от температуры и давления , для: воздуха, аммиака, двуокиси углерода и воды

Теплопроводность для обычных материалов и продуктов:

900 900 78 0,1 - 0,22 0,606
Теплопроводность
- k -
Вт / (м · К)

Материал / вещество Температура
25 o C
(77 o F)
125 o C
(257 o F)
225 o C
(437 o F)
Acetals 0.23
Ацетон 0,16
Ацетилен (газ) 0,018
Акрил 0,2
Воздух, атмосфера (газ) 0,0262 0,0333 0,0398
Воздух, высота над уровнем моря 10000 м 0,020
Агат 10,9
Спирт 0.17
Глинозем 36 26
Алюминий
Алюминий Латунь 121
Оксид алюминия 30
Аммиак (газ) 0,0249 0,0369 0,0528
Сурьма 18,5
Яблоко (85.6% влаги) 0,39
Аргон (газ) 0,016
Асбестоцементная плита 0,744
Асбестоцементные листы 0,166
Асбестоцемент 2,07
Асбест рыхлый 0,15
Асбестовый картон 0.14
Асфальт 0,75
Бальзовое дерево 0,048
Битум 0,17
Слои битума / войлока 0,5
Говядина постная (влажность 78,9%) 0,43 - 0,48
Бензол 0,16
Бериллий
Висмут 8.1
Битум 0,17
Доменный газ (газ) 0,02
Весы котла 1,2 - 3,5
Бор 25
Латунь
Бриз 0,10 - 0,20
Кирпич плотный 1.31
Кирпич пожарный 0,47
Кирпич изоляционный 0,15
Кирпичная кладка обыкновенная (строительный кирпич) 0,6 -1,0
Кирпичная кладка , плотная 1,6
Бром (газ) 0,004
Бронза
Коричневая железная руда 0.58
Масло (влажность 15%) 0,20
Кадмий
Силикат кальция 0,05
Углерод 1,7
Двуокись углерода (газ) 0,0146
Окись углерода 0,0232
Чугун
Целлюлоза, хлопок, древесная масса и регенерированная 0.23

Ацетат целлюлозы, формованный, лист

0,17 - 0,33
Нитрат целлюлозы, целлулоид 0,12 - 0,21
Цемент, Портленд 0,29
Цемент, строительный раствор 1,73
Керамические материалы
Мел 0.09
Древесный уголь 0,084
Хлорированный полиэфир 0,13
Хлор (газ) 0,0081
Хром никелевая сталь 16,3
Хром
Оксид хрома 0,42
Глина, от сухой до влажной 0.15 - 1,8
Глина насыщенная 0,6 - 2,5
Уголь 0,2
Кобальт
Треск (влажность 83% содержание) 0,54
Кокс 0,184
Бетон, легкий 0,1 - 0,3
Бетон, средний 0.4 - 0,7
Бетон, плотный 1,0 - 1,8
Бетон, камень 1,7
Константан 23,3
Медь
Кориан (керамический наполнитель) 1,06
Пробковая плита 0,043
Пробка, повторно гранулированная 0.044
Пробка 0,07
Хлопок 0,04
Вата 0,029
Углеродистая сталь
Утеплитель из шерсти 0,029
Купроникель 30% 30
Алмаз 1000
Диатомовая земля (Sil-o-cel) 0.06
Диатомит 0,12
Дуралий
Земля, сухая 1,5
Эбонит 0,17
11,6
Моторное масло 0,15
Этан (газ) 0.018
Эфир 0,14
Этилен (газ) 0,017
Эпоксидный 0,35
Этиленгликоль 0,25
Перья 0,034
Войлок 0,04
Стекловолокно 0.04
Волокнистая изоляционная плита 0,048
Древесноволокнистая плита 0,2
Огнеупорный кирпич 500 o C 1,4
Фтор (газ) 0,0254
Пеностекло 0,045
Дихлордифторметан R-12 (газ) 0.007
Дихлордифторметан R-12 (жидкость) 0,09
Бензин 0,15
Стекло 1.05
Стекло, жемчуг, жемчуг 0,18
Стекло, жемчуг, насыщенное 0,76
Стекло, окно 0.96
Стекло-вата Изоляция 0,04
Глицерин 0,28
Золото
Гранит 1,7 - 4,0
Графит 168
Гравий 0,7
Земля или почва, очень влажная зона 1.4
Земля или почва, влажная зона 1,0
Земля или почва, сухая зона 0,5
Земля или почва, очень сухая зона 0,33
Гипсокартон 0,17
Волос 0,05
ДВП высокой плотности 0.15
Лиственных пород (дуб, клен ..) 0,16
Hastelloy C 12
Гелий (газ) 0,142
Мед ( 12,6% влажности) 0,5
Соляная кислота (газ) 0,013
Водород (газ) 0,168
Сероводород (газ) 0.013
Лед (0 o C, 32 o F) 2,18
Инконель 15
Чугун 47-58
Изоляционные материалы 0,035 - 0,16
Йод 0,44
Иридий 147
Железо
Оксид железа 0 .58
Капок изоляция 0,034
Керосин 0,15
Криптон (газ) 0,0088
Свинец
, сухой 0,14
Известняк 1,26 - 1,33
Литий
Магнезиальная изоляция (85%) 0.07
Магнезит 4,15
Магний
Магниевый сплав 70-145
Мрамор 2,08 - 2,94
Ртуть, жидкость
Метан (газ) 0,030
Метанол 0.21
Слюда 0,71
Молоко 0,53
Изоляционные материалы из минеральной ваты, шерстяные одеяла .. 0,04
Молибден
Монель
Неон (газ) 0,046
Неопрен 0.05
Никель
Оксид азота (газ) 0,0238
Азот (газ) 0,024
Закись азота (газ) 0,0151
Нейлон 6, Нейлон 6/6 0,25
Масло машинное смазочное SAE 50 0,15
Оливковое масло 0.17
Кислород (газ) 0,024
Палладий 70,9
Бумага 0,05
Парафиновый воск 0,25
Торф 0,08
Перлит, атмосферное давление 0,031
Перлит, вакуум 0.00137
Фенольные литые смолы 0,15
Формовочные смеси фенолформальдегид 0,13 - 0,25
Фосфорбронза 110 Pinchbe20 159
Шаг 0,13
Карьерный уголь 0.24
Гипс светлый 0,2
Гипс, металлическая планка 0,47
Гипс песочный 0,71
Гипс, деревянная планка 0,28
Пластилин 0,65 - 0,8
Пластмассы вспененные (изоляционные материалы) 0.03
Платина
Плутоний
Фанера 0,13
Поликарбонат 0,19
Полиэстер
Полиэтилен низкой плотности, PEL 0,33
Полиэтилен высокой плотности, PEH 0.42 - 0,51
Полиизопреновый каучук 0,13
Полиизопреновый каучук 0,16
Полиметилметакрилат 0,17 - 0,25
Полипропилен
Полистирол вспененный 0,03
Полистирол 0.043
Пенополиуретан 0,03
Фарфор 1,5
Калий 1
Картофель, сырая мякоть 0,55
Пропан (газ) 0,015
Политетрафторэтилен (ПТФЭ) 0,25
Поливинилхлорид, ПВХ 0.19
Стекло Pyrex 1,005
Кварц минеральный 3
Радон (газ) 0,0033
Красный металл
Рений
Родий
Порода, твердая 2-7
Порода, вулканическая порода (туф) 0.5 - 2,5
Изоляция из каменной ваты 0,045
Канифоль 0,32
Резина, ячеистая 0,045
Резина натуральная 0,13
Рубидий
Лосось (влажность 73%) 0,50
Песок сухой 0.15 - 0,25
Песок влажный 0,25 - 2
Песок насыщенный 2-4
Песчаник 1,7
Опилки 0,08
Селен
Овечья шерсть 0,039
Аэрогель кремнезема 0.02
Силиконовая литая смола 0,15 - 0,32
Карбид кремния 120
Кремниевое масло 0,1
Серебро
Шлаковая вата 0,042
Сланец 2,01
Снег (температура <0 o C) 0.05 - 0,25
Натрий
Хвойные породы (пихта, сосна ..) 0,12
Почва, глина 1,1
Почва, с органическими материя 0,15 - 2
Грунт насыщенный 0,6 - 4

Припой 50-50

50

Сажа

0.07

Насыщенный пар

0,0184
Пар низкого давления 0,0188
Стеатит 2
Сталь углеродистая
Сталь, нержавеющая сталь
Изоляция соломенной плиты, сжатая 0,09
Пенополистирол 0.033
Диоксид серы (газ) 0,0086
Сера кристаллическая 0,2
Сахара 0,087 - 0,22
Тантал
Смола 0,19
Теллур 4,9
Торий
Древесина, ольха 0.17
Древесина, ясень 0,16
Древесина, береза ​​ 0,14
Древесина, лиственница 0,12
Древесина, клен 0,16
Древесина дубовая 0,17
Древесина осина 0,14
Древесина оспа 0.19
Древесина, бук красный 0,14
Древесина, сосна красная 0,15
Древесина, сосна белая 0,15
Древесина ореха 0,15
Олово
Титан
Вольфрам
Уран
Пенополиуретан 0.021
Вакуум 0
Гранулы вермикулита 0,065
Виниловый эфир 0,25
Вода, пар (пар) 0,0267 0,0359
Пшеничная мука 0.45
Белый металл 35-70
Древесина поперек волокон, белая сосна 0,12
Древесина поперек волокон, бальза 0,055
Древесина поперек волокон, сосна желтая, древесина 0,147
Дерево, дуб 0,17
Шерсть, войлок 0.07
Древесная вата, плита 0,1 - 0,15
Ксенон (газ) 0,0051
Цинк

Пример - Проводящая теплопередача через Алюминиевый горшок и горшок из нержавеющей стали

Кондуктивная теплопередача через стенку горшка может быть рассчитана как

q = (к / с) A dT (1)

или

q / A = (к / с) dT

где

q = теплопередача (Вт, БТЕ / ч)

A = площадь поверхности (м 2 , фут 2 )

q / A = теплопередача на единицу площади (Вт / м 2 , Btu / (h ft 2 ))

k = среднеквадратичная проводимость (Вт / мК, БТЕ / (час фут ° F) )

dT = t 1 - t 2 = разница температур ( o C, o F)

s = толщина стенки (м, фут)

Калькулятор теплопроводности

k = теплопроводность (Вт / мК, БТЕ / (час фут ° F) )

s = толщина стенки (м, фут)

A = площадь поверхности (м 2 , фут 2 )

dT = t 1 - t 2 = разница температур ( o C, или F)

Примечание! - общая теплопередача через поверхность определяется « общим коэффициентом теплопередачи », который в дополнение к кондуктивной теплопередаче зависит от

Кондуктивная теплопередача через алюминиевую стенку горшка толщиной 2 мм - разность температур 80 o C

Коэффициент теплопроводности для алюминия составляет 215 Вт / (м · К) (из таблицы выше).Кондуктивная теплопередача на единицу площади может быть рассчитана как

q / A = [(215 Вт / (м · K)) / (2 10 -3 м)] (80 o C)

= 8600000 (Вт / м 2 )

= 8600 (кВт / м 2 )

Кондуктивная теплопередача через стенку емкости из нержавеющей стали толщиной 2 мм - разница температур 80 o C

Теплопроводность для нержавеющей стали 17 Вт / (м · К) (из таблицы выше).Кондуктивная теплопередача на единицу площади может быть рассчитана как

q / A = [(17 Вт / (м · K)) / (2 10 -3 м) ] (80 o C)

= 680000 (Вт / м 2 )

= 680 (кВт / м 2 )

.

Примеры и приложения теплопроводности

«Скорость потока тепла через противоположные грани метрового куба вещества, поддерживаемого при разнице температур в один кельвин, называется теплопроводностью этого вещества».

Что такое формула теплопроводности?

Теплопроводность в разных материалах происходит с разной скоростью. В металлах тепло течет быстро по сравнению с изоляторами, такими как дерево или резина.Рассмотрим сплошной блок:

Одна из двух противоположных сторон, каждая из которых имеет площадь поперечного сечения A, нагревается до температуры T1. Тепло Q течет по длине L к противоположной стороне при температуре T2 за t секунд.

«Количество тепла, которое течет в единицу времени, называется скоростью потока тепла».

Таким образом, Скорость потока тепла = Q / t ………. (1)

Было замечено, что скорость, с которой тепло проходит через твердый объект, зависит от различных факторов.

  • Площадь поперечного сечения твердого тела:

Большая площадь поперечного сечения A твердого тела содержит большее количество молекул и свободных электронов на каждом слое, параллельном его площади поперечного сечения, и, следовательно, больше будет скорость потока тепла через твердые тела.Таким образом:

Скорость потока тепла Q / t ∝ A… .. (2)

Чем больше расстояние между горячим и холодным концом твердых тел, тем больше времени потребуется для отвода тепла к более холодному концу. и меньше будет скорость потока тепла. Таким образом:

Скорость потока тепла Q / t ∝ 1 / л…. (3)

  • Разница температур между концами

Больше температура разница (T1 - T2) между горячей и холодной сторонами твердых тел, тем больше будет скорость потока тепла.Таким образом:

Скорость потока тепла составляет Q / t (T1 - T2)…. (4)

Комбинируя вышеуказанные факторы, получаем:

Q / t ∝ A (T1 -T2) / L

Скорость потока тепла Q / t = KA (T1 - T2) / L… .. (5)

Здесь K - коэффициент пропорциональности, называемый теплопроводностью твердых тел. Его значение зависит от природы вещества и отличается для разных материалов. Из приведенного выше уравнения (5) мы находим K как:

K = Q / t × L / A (T1 - T2)….. (6)

Примеры теплопроводности

Примеры теплопроводности некоторых веществ приведены в таблице:

Следите за обновлениями на сайте Physicsabout.com по связанным темам, которые приведены ниже.
Проводимость тепла
Конвенция тепла
Излучение тепла

.

Теплопроводность - Простая английская Википедия, бесплатная энциклопедия

Теплопроводность - это способность материала проводить тепло. Металлы обладают хорошей теплопроводностью, как и газы. Теплопроводность материала - это определяющее свойство, которое помогает в разработке эффективных технологий нагрева / охлаждения. Значение теплопроводности можно определить путем измерения скорости, с которой тепло может проходить через материал.

Термическое сопротивление противоположно теплопроводности.Это означает, что тепло не проводит много. Материалы с высоким удельным сопротивлением называются «термоизоляторами» и используются в одежде, термосах, домашних изоляционных материалах и автомобилях, чтобы согреться, или в холодильниках, морозильниках и термосах, чтобы вещи оставались холодными.

Теплопроводность часто обозначается греческой буквой «каппа», κ {\ displaystyle \ kappa}. Единицы теплопроводности - ватты на метр-кельвин. Ватты - это мера мощности, метры - мера длины, а кельвины - мера температуры.По единицам измерения мы видим, что теплопроводность - это мера того, сколько энергии проходит через расстояние из-за разницы температур.

Некоторые отличные теплоизоляторы: Вакуум, Аэрогель, Полиуретан

Вот некоторые отличные проводники тепла: Серебро, медь, бриллиант

Серебро - один из наиболее теплопроводных материалов (и довольно распространен), поэтому с серебром можно провести несколько интересных экспериментов, которые очень хорошо показывают, как работает теплопроводность.

Один пример: вы кладете 2 ложки в кипящую воду, одна из которых стальная, а другая серебряная. Когда вы вынимаете ложки из кипящей воды, серебряная ложка горячее, чем стальная. Причина этого в том, что серебро проводит тепло лучше, чем сталь. Серебряная ложка также будет остывать быстрее из-за этого, так как лучше отводит тепло.

Другой пример теплопроводности серебра - нанесение различных материалов на кубики льда. Шайба для утюга просто сядет на лед и постепенно станет холоднее.Медный пенни растает через кубик льда и быстрее остывает. Серебряная монета, ложка или кольцо на кубике льда погрузится в него, как если бы кубик льда был сделан из густого сиропа, а серебро почти мгновенно станет ледяным. Опять же, это потому, что серебро действительно хорошо поглощает тепло из воздуха и передает его кубику льда. Медь тоже хороша в этом, но не так хорошо, как серебро.

.

Смотрите также