От чего зависит прочность металла


Удельная прочность металлов: таблица. Механические свойства металлов

Использовать металлы в повседневной жизни начали еще вначале развития человечества. Медь – это первый их представитель. Она доступна в природе и прекрасно обрабатывается. При археологических раскопках часто находят изготовленные из нее предметы домашнего обихода и разные изделия.

В процессе развития человек обучался объединять разные металлы, производя сплавы большей прочности. Из них делали орудия труда, а позже использовали для изготовления оружия. Опыты продолжаются и в наше время, создаются сплавы с удельной прочностью металлов, пригодные для возведения современных конструкций.

Виды нагрузок

К механическим свойствам металлов и сплавов относятся такие, которые способны оказывать сопротивление действию на них внешних сил или нагрузок. Они могут быть самыми разнообразными и по своему воздействию различают:

  • статические, которые неспешно возрастают от нулевого значения до максимума, а затем остаются постоянными или незначительно меняются;
  • динамические – возникают вследствие удара и действуют короткий промежуток.

Виды деформации

Деформация – это видоизменение конфигурации твердого тела под воздействием прилагаемых к нему нагрузок (внешних сил). Деформации, после которых материал возвращается в прежнюю форму и сохраняет первоначальные размеры, считают упругими, в противном случае (форма изменилась, материал удлинился) – пластическими или остаточными. Существует несколько видов деформации:

  • Сжатие. Уменьшается объем тела в результате действия на него сдавливающих сил. Такую деформацию испытывают фундаменты котлов и машин.
  • Растяжение. Увеличивается длина тела, когда к его концам прилагаются силы, направление которых совпадает с его осью. Растяжению подвергаются тросы, приводные ремни.
  • Сдвиг или срез. В этом случае силы направлены навстречу друг другу и при определенных условиях наступает срез. Примером служат заклепки и болты стяжки.
  • Кручение. Пара сил, противоположно направленных, действует на закрепленное одним концом тело (валы двигателей и станков).
  • Изгиб. Изменение кривизны тела при воздействии внешних сил. Такое действие характерно для балок, стрел подъемных кранов, железнодорожных рельсов.

Определение прочности металла

Одно из основных требований, которое предъявляют к металлу, применяемому для производства металлических конструкций и деталей, является прочность. Для ее определения берется образец металла и растягивается на испытательной машине. Эталон становится тоньше, площадь поперечного сечения уменьшается с одновременным увеличением его длины. В определенный момент образец начинает растягиваться лишь в одном месте, образуя «шейку». А через некоторое время происходит разрыв в области самого тонкого места. Так ведут себя исключительно вязкие металлы, хрупкие: твердая сталь и чугун растягиваются незначительно и у них не образуется шейка.

Нагрузка на образец определяется специальным прибором, который носит название силоизмеритель, он вмонтирован в испытательную машину. Для вычисления основной характеристики металла, называемой пределом прочности материала, надо максимальную нагрузку, выдержанную образцом до разрыва, разделить на величину площади поперечного сечения до растяжения. Эта величина необходима конструктору для того, чтобы определиться с размерами изготовляемой детали, и технологу назначить режимы обработки.

Самые прочные металлы в мире

К высокопрочным металлам можно отнести следующие:

Титан находит применение в медицине, военной промышленности, кораблестроении, авиации.

  • Уран. Самый известный и прочный металл в мире, является слабым радиоактивным материалом. Встречается в природе в чистом виде и в соединениях. Он относится к тяжелым металлам, гибкий, ковкий и относительно пластичный. Широко используется в производственных сферах.
  • Вольфрам. Расчет прочности металла показывает, что это самый прочный и тугоплавкий металл, не поддающийся химическому воздействию. Хорошо куется, его можно вытянуть в тонкую нить. Используется для нити накаливания.
  • Рений. Тугоплавкий, имеет высокую плотность и твердость. Очень прочный, не подвержен перепадам температуры. Находит применение в электронике и технике.
  • Осмий. Твердый металл, тугоплавкий, стойкий к механическим повреждениям и агрессивным средам. Применяют в медицине, используют для ракетной техники, электронной аппаратуры.
  • Иридий. В природе в свободном виде встречается редко, чаще – в соединениях с осмием. Механической обработке поддается плохо, имеет высокую стойкость к химическим веществам и прочность. Сплавы с металлом: титаном, хромом, вольфрамом, используют для изготовления ювелирных изделий.
  • Бериллий. Высокотоксичный металл с относительной плотностью, имеющий светло-серый цвет. Находит применение в черной металлургии, атомной энергетике, лазерной и аэрокосмической технике. Имеет высокую твердость и используется для легирования сплавов.
  • Хром. Очень твердый металл с высокой прочностью, бело-голубого цвета, обладает стойкостью к щелочам и кислотам. Прочность металла и сплавов позволяют их использовать для изготовления медицинского и химического оборудования, а также для металлорежущих инструментов.
  • Тантал. Металл серебристого цвета, имеет высокую твердость, прочность, обладает тугоплавкостью и стойкостью к коррозии, пластичен, легко обрабатывается. Находит применение при создании ядерных реакторов, в металлургии и химической промышленности.
  • Рутений. Принадлежит к металлам платиновой группы. Обладает высокой прочностью, твердостью, тугоплавкостью, химической стойкостью. Из него изготовляют контакты, электроды, острые наконечники.

Как определяют свойства металлов?

Для испытания металлов на прочность применяют химические, физические и технологические методы. Твердость определяет, как сопротивляются материалы деформациям. Стойкий металл имеет большую прочность и детали, изготовленные из него, меньше снашиваются. Для определения твердости вдавливают шарик, алмазный конус или пирамидку в металл. Значение твердости устанавливают по диаметру отпечатка или по глубине вдавливания предмета. Более крепкий металл меньше деформируется, и глубина отпечатка будет меньше.

А вот образцы на растяжение испытываются на разрывных машинах с плавно нарастающей при растягивании нагрузкой. Эталон может иметь в сечении круг или квадрат. Для проверки металла противостоять нагрузкам ударного характера проводят испытания на удар. В середине специально изготовленного образца делают надрез и устанавливают его напротив ударного устройства. Разрушение должно происходить там, где слабое место. При испытании металлов на прочность структуру материала исследуют рентгеновскими лучами, ультразвуком и при помощи мощных микроскопов, а также используют травление химическими веществами.

К технологическим относятся самые простые виды испытаний на разрушение, пластичность, ковку, сварку. Испытание на выдавливание дает возможность определить, способен ли листовой материал подвергаться холодной штамповке. С помощью шарика в металле выдавливают лунку, пока не появится первая трещина. Глубина ямки до появления разрушения и будет характеризовать пластичность материала. Испытание на изгиб дает возможность определить способность листового материала принимать нужную форму. Это испытание используют для оценки качества швов при сварке. Для оценки качества проволоки используется проба на перегиб. Трубы испытывают на расплющивание и изгиб.

Механические свойства металлов и сплавов

К механическим свойствам материалов из металла относятся следующие:

  1. Прочность. Она заключается в способности материала оказывать сопротивление разрушению под воздействием сил извне. Вид прочности зависит от того, как действуют внешние силы. Ее разделяют на: сжатие, растяжение, кручение, изгиб, ползучесть, усталость.
  2. Пластичность. Это способность металлов и их сплавов под воздействием нагрузки менять форму, не подвергаясь разрушению, и сохранять ее после окончания воздействия. Пластичность материала из металла определяют при его растяжении. Чем больше происходит удлинение, при одновременном уменьшении сечения, тем пластичнее металл. Материалы, обладающие хорошей пластичностью, прекрасно обрабатываются давлением: ковке, прессованию. Пластичность характеризуют двумя величинами: относительное сужение и удлинение.
  3. Твердость. Такое качество металла заключается в способности оказывать сопротивление проникновению в него инородного тела, имеющего более значительную твердость, и не получить при этом остаточных деформаций. Износоустойчивость и прочность – это основные характеристики металлов и сплавов, которые тесно связаны с твердостью. Материалы с такими свойствами находят применение для изготовления инструментов, применяемых для обработки металлов: резцы, напильники, сверла, метчики. Нередко по твердости материала определяют его износоустойчивость. Так твердые стали при эксплуатации изнашиваются меньше, чем более мягкие сорта.
  4. Ударная вязкость. Особенность сплавов и металлов сопротивляться влиянию нагрузок, сопровождающихся ударом. Это одна из важных характеристик материала, из которого изготовлены детали, испытывающие ударную нагрузку, во время работы машины: оси колес, коленчатые валы.
  5. Усталость. Это состояние металла, который находится под постоянным воздействием нагрузок. Усталость металлического материала происходит постепенно и может закончиться разрушением изделия. Способность металлов оказывать сопротивление разрушению от усталости называют выносливостью. Это свойство находится в зависимости от природы сплава или металла, состояния поверхности, характера обработки, условий работы.

Классы прочности и их обозначения

Нормативными документами по механическим свойствам крепежных изделий введено понятие класс прочности металла и установлена система обозначения. Каждый класс прочности обозначается двумя цифрами, между которыми ставится точка. Первое число означает предел прочности, уменьшенный в 100 раз. Например, класс прочности 5.6 означат, что предел прочности будет 500. Второе число увеличено в 10 раз – это отношение предела текучести к временному сопротивлению, выраженному в процентах (500х0,6=300), т. е. 30 % составляет минимальный предел текучести от предела прочности на растяжение. Все изделия, используемые для крепежа, классифицируются по назначению применения, форме, используемому материалу, классу прочности и покрытию. По назначению использования они бывают:

  • Лемешные. Их используются для сельскохозяйственных машин.
  • Мебельные. Применяются в строительстве и мебельном производстве.
  • Дорожные. Ими крепят металлоконструкции.
  • Машиностроительные. Применяют в машиностроительной промышленности и приборостроении.

Механические свойства крепежных изделий зависят от стали, из которой они изготовлены и качества обработки.

Удельная прочность

Удельная прочность материала (формула ниже) характеризуется отношением предела прочности к плотности металла. Эта величина показывает прочность конструкции при данной его массе. Наибольшую важность она представляет для таких отраслей, как авиастроение, ракетостроение и производство космических аппаратов.

По величине удельной прочности сплавы из титана самые прочные из всех применяемых технических материалов. Титановые сплавы вдвое превышают удельную прочность металлов, относящихся к легированным сталям. Они не поддаются коррозии на воздухе, в кислотной и щелочной среде, не боятся морской воды и обладают хорошей теплоустойчивостью. При высоких температурах их прочность выше, чем у сплавов с магнием и алюминием. Благодаря этим свойствам их применение, как конструкционного материала, все время увеличивается и находит широкое использование в машиностроении. Недостаток титановых сплавов заключается в их низкой обрабатываемости резанием. Это связано с физическими и химическими свойствами материала и особой структурой сплавов. Выше приведена таблица удельной прочности металлов.

Использование пластичности и прочности металлов

Очень важными свойствами металла являются пластичность и прочность. Эти свойства находятся в прямой зависимости друг от друга. Они не позволяют металлу изменять форму и препятствуют макроскопическому разрушению при воздействии на него внешних и внутренних сил.

Металлы, обладающие высокой пластичностью, под воздействием нагрузки разрушаются постепенно. Вначале у них появляется изгиб и только затем он начинает постепенно разрушаться. Пластичные металлы легко меняют форму, поэтому их широко используют для изготовления кузовов автомобилей. Прочность и пластичность металлов зависит от того, как направлены приложенные к нему силы и в каком направлении проводилась прокатка при изготовлении материала. Установлено, что при прокатке кристаллы металла удлиняются в ее направлении больше, чем в поперечной направленности. У листовой стали прочность и пластичность значительно больше в направлении прокатки. В поперечном же направлении прочность уменьшается на 30 %, а пластичность на 50 %, по толщине листа эти показатели еще ниже. Например, появление излома на стальном листе при сваривании можно объяснить параллельностью оси шва и направления прокатки. По пластичности и прочности материала устанавливают возможность его использования для изготовления различных деталей машин, сооружений, инструментов, приборов.

Нормативное и расчетное сопротивление металла

Одним из основных параметров, которые характеризуют сопротивление металлов воздействиям силы, является нормативное сопротивление. Оно устанавливается по нормам проектирования. Расчетное сопротивление получается в результате деления нормативного на соответствующий коэффициент надежности по данному материалу. В некоторых случаях учитывают еще и коэффициент условий работы конструкций. В вычислениях, имеющих практическое значение, в основном используют расчетное сопротивление металла.

Пути повышения прочности металла

Существует несколько способов повышения прочности металлов и сплавов:

  • Создание сплавов и металлов, имеющих бездефектную структуру. Имеются разработки по изготовлению нитевидных кристаллов (усов) в несколько десятков раз превышающих прочность обыкновенных металлов.
  • Получение объемного и поверхностного наклепа искусственным путем. При обработке металла давлением (ковка, волочение, прокатка, прессование) образуется объемный наклеп, а накатка и дробеструйная обработка дает поверхностный наклеп.
  • Создание легированного металла, используя элементы из таблицы Менделеева.
  • Очищение металла, от имеющихся в нем примесей. В результате этого улучшаются его механические свойства, распространение трещин значительно уменьшается.
  • Устранение с поверхности деталей шероховатости.

Интересные факты

  • Сплавы из титана, удельный вес которых превышает алюминиевые примерно на 70 %, прочнее их в 4 раза, поэтому, по удельной прочности сплавы, содержащие титан, выгоднее использовать для самолетостроения.
  • Многие алюминиевые сплавы превышают удельную прочность сталей, содержащих углерод. Сплавы из алюминия имеют высокую пластичность, коррозийную стойкость, прекрасно обрабатываются давлением и резанием.
  • У пластмасс удельная прочность выше, чем у металлов. Но из-за недостаточной жесткости, механической прочности, старения, повышенной хрупкости и малой термостойкости ограничены в применении слоистые пластики, текстолиты и гетинаксы, особенно в крупногабаритных конструкциях.
  • Установлено, что по выносливости к коррозии и удельной прочности, металлы черные, цветные и многие их сплавы уступают стеклопластикам.
Механические свойства металлов являются важнейшим фактором использования их в практических нуждах. Проектируя какую-то конструкцию, деталь или машину и подбирая материал, обязательно рассматривают все механические свойства, которыми он обладает.

Какие металлы самые крепкие?

  • Металлические изделия
    • Сталь холоднокатаная A109
      • Товаров на складе
      • Физические и химические свойства
    • Отожженная пружинная сталь
      • Товаров на складе
      • Физические и химические свойства
    • Бериллиевая медь
      • Товаров на складе
      • Физические и химические свойства
    • латунь
      • Товаров на складе
      • Физические и химические свойства
    • Холоднокатаная Сталь 1008/1010
      • Товаров на складе
      • Физические и химические свойства
    • Медь
      • Товаров на складе
      • Физические и химические свойства
    • Фосфорная бронза
      • Товаров на складе
      • Физические и химические свойства
    • нержавеющая сталь
      • 301 шт. Из нержавеющей стали
      • Складские позиции из нержавеющей стали 302/304
      • Физические и химические свойства
    • Закаленная пружинная сталь
      • Товаров на складе
      • Физические и химические свойства
  • Услуги и возможности
    • По длине
    • Edge Conditioning
    • Продольная
.

Основы и уравнения прочности материалов | Механика материалов

Меню «Прочность / Механика материалов»

Сопротивление материалов , также называемое механика материалов , представляет собой предмет, изучающий поведение твердых объектов, подверженных напряжениям и деформациям.

В материаловедении прочность материала - это его способность без разрушения выдерживать приложенную нагрузку.Нагрузка, приложенная к механическому элементу, будет вызывать внутренние силы внутри элемента, называемые напряжениями, когда эти силы выражаются в единицах. Напряжения, действующие на материал, по-разному вызывают деформацию материала. Деформация материала называется деформацией, если эти деформации также относятся к единице. Приложенные нагрузки могут быть осевыми (растягивающими или сжимающими) или сдвигающими. Напряжения и деформации, возникающие в механическом элементе, необходимо рассчитать, чтобы оценить его несущую способность.Это требует полного описания геометрии элемента, его ограничений, нагрузок, приложенных к элементу, и свойств материала, из которого он состоит. С полным описанием нагрузки и геометрии элемента можно рассчитать состояние напряжения и состояние деформации в любой точке элемента. Когда состояние напряжения и деформации внутри элемента известно, можно рассчитать прочность (несущую способность) этого элемента, его деформации (характеристики жесткости) и его стабильность (способность сохранять свою первоначальную конфигурацию).Рассчитанные напряжения затем можно сравнить с некоторой мерой прочности элемента, такой как текучесть материала или предел прочности. Рассчитанный прогиб элемента можно сравнить с критериями прогиба, основанными на использовании элемента. Расчетную нагрузку на продольный изгиб элемента можно сравнить с приложенной нагрузкой. Расчетная жесткость и распределение массы элемента могут использоваться для расчета динамического отклика элемента, а затем сравниваться с акустической средой, в которой он будет использоваться.

Под прочностью материала понимается точка на инженерной кривой «напряжение-деформация» (предел текучести), за которой материал испытывает деформации, которые не будут полностью устранены при снятии нагрузки, и в результате элемент будет иметь постоянный прогиб. Предел прочности относится к точке на инженерной кривой «напряжение – деформация», соответствующей напряжению, вызывающему разрушение.

Ниже приведены основные определения и уравнения, используемые для расчета прочности материалов.


Напряжение (нормальное)

Напряжение - это отношение приложенной нагрузки к площади поперечного сечения растягиваемого элемента, выраженное в фунтах на квадратный дюйм (psi) или кг / мм 2 .

Нагрузка

л

Напряжение, σ

=


=


Площадь

А

Деформация (нормальная)

Безразмерная мера деформации материала.

изменение длины

Δ L

Деформация, ε

=


=


исходная длина

л

Кривая деформации напряжения

Предел пропорциональности - это точка на кривой напряжения-деформации, в которой она начинает отклоняться от прямолинейная связь между напряжением и деформацией.См. Сопроводительный рисунок в (1 и 2).

Предел упругости - это максимальное напряжение, которому образец может подвергаться и вернуться к исходной длине после снятия нагрузки. Говорят, что материал подчеркнут в упругая область, когда рабочее напряжение не превышает предела упругости, и подлежащая напряжению в пластической области, когда рабочее напряжение действительно превышает предел упругости. Предел упругости для стали для всех практических целей такой же, как и ее предел пропорциональности.См. Сопроводительный рисунок в (1, 2).

Предел текучести - это точка на кривой напряжения-деформации, в которой происходит внезапное увеличение деформации. без соответствующего увеличения стресса. Не все материалы имеют предел текучести. См. Сопроводительный рисунок в (1).

Предел текучести, S y , это максимальное напряжение, которое может быть приложено без остаточной деформации образца для испытаний.Это значение напряжения на пределе упругости материалов для который существует предел упругости. Из-за сложности определения предела упругости и поскольку многие материалы не имеют упругой области, предел текучести часто определяется метод смещения, как показано на прилагаемом рисунке в (3). Предел текучести в таком case - значение напряжения на кривой напряжения-деформации, соответствующее определенному количеству постоянных набор или напряжение, обычно 0.1 или 0,2% от исходного размера.


Модуль упругости

Деформация металла пропорциональна приложенным нагрузкам в диапазоне нагрузок.

Поскольку напряжение пропорционально нагрузке, а деформация пропорциональна деформации, это означает, что напряжение пропорционально деформации. Закон Гука утверждает эту пропорциональность.

Напряжение σ

=
= E
Штамм ε

Константа E - это модуль упругости, модуль Юнга или модуль упругости при растяжении, а также жесткость материала.Модуль Юнга составляет 10 6 фунт / кв. Дюйм или 10 3 кг / мм 2 . Если материал подчиняется закону Гука, он эластичен. Модуль не чувствителен к состоянию материала. Нормальная сила напрямую зависит от модуля упругости.


Предел пропорциональности

Наибольшее напряжение, при котором материал способен выдерживать приложенную нагрузку без отклонения от пропорциональности напряжения к деформации.Выражается в фунтах на квадратный дюйм (кг / мм 2 ).


Предел прочности (растяжение)

Максимальное напряжение, которое материал выдерживает при приложении нагрузки. Значение определяется делением нагрузки при разрушении на первоначальную площадь поперечного сечения.


Предел упругости

Точка на кривой "напряжение-деформация", за которой материал необратимо деформируется после снятия нагрузки.


Предел текучести

Точка, в которой материал превышает предел упругости и не возвращается к своей исходной форме или длине, если напряжение снимается. Это значение определяется путем оценки диаграммы напряжения-деформации, полученной во время испытания на растяжение.


Коэффициент Пуассона

Отношение поперечной деформации к продольной - это коэффициент Пуассона для данного материала.

боковая деформация
мкм =
продольная деформация

Коэффициент Пуассона - это безразмерная константа, используемая для анализа напряжения и прогиба таких конструкций, как балки, пластины, оболочки и вращающиеся диски.

Алюминий

0,334

Нейзильбер

0,322

Бериллиевая медь

0,285

Фосфорная бронза

0.349

Латунь

0,340

Резина

0,500

Чугун, серый

0,211

Сталь литая

0.265

Медь

0,340

высокоуглеродистый

0,295

Инконель

0,290

легкая

0.303

Свинец

0,431

никель

0,291

Магний

0,350

Кованое железо

0.278

Металлический монель

0,320

цинк

0,331


Напряжение изгиба

При сгибании куска металла одна поверхность материала растягивается при растяжении, а противоположная поверхность сжимается.Отсюда следует, что между двумя поверхностями есть линия или область нулевого напряжения, называемая нейтральной осью. Сделайте следующие предположения в простой теории изгиба:

  1. Балка изначально прямая, ненапряженная и симметричная.
  2. Материал балки линейно эластичный, однородный и изотропный.
  3. Пропорциональный предел не превышен.
  4. Модуль Юнга для материала одинаков при растяжении и сжатии
  5. Все прогибы небольшие, поэтому плоские поперечные сечения остаются плоскими до и после изгиба.

Используя классические формулы балки и свойства сечения, можно получить следующую взаимосвязь:

3 PL
Напряжение изгиба, σ b =
2 вес 2
PL 3
Модуль упругости при изгибе или изгибе, E b =
4 вес 3 y
Где: п. = нормальная сила
л = длина балки
Вт = ширина луча
т = толщина балки
y = прогиб в точке нагрузки

Сообщаемый модуль упругости при изгибе обычно является начальным модулем из кривой зависимости напряжения от деформации при растяжении.

Максимальное напряжение возникает на поверхности балки, наиболее удаленной от нейтральной поверхности (оси), и составляет:

Mc млн
Максимальное поверхностное напряжение, σ max =
=
I Z

Где: млн = изгибающий момент
с = расстояние от нейтральной оси до внешней поверхности, где возникает максимальное напряжение
I = момент инерции
Z = I / c = модуль упругости сечения

Для прямоугольной консольной балки с сосредоточенной нагрузкой на одном конце максимальное поверхностное напряжение определяется по формуле:

Методы уменьшения максимального напряжения состоят в том, чтобы сохранить постоянную энергию деформации в балке при изменении профиля балки.Дополнительные профили балки бывают трапециевидные, конические и торсионные.
Где: г = прогиб балки под нагрузкой
E = Модуль упругости
т = толщина балки
л = длина балки

Урожайность

Податливость возникает, когда расчетное напряжение превышает предел текучести материала. Расчетное напряжение обычно представляет собой максимальное поверхностное напряжение (простая нагрузка) или напряжение Фон Мизеса (сложные условия нагружения). Критерий текучести фон Мизеса утверждает, что текучесть происходит, когда напряжение фон Мизеса превышает предел текучести при растяжении.Часто в результатах анализа напряжений методом конечных элементов используются напряжения фон Мизеса. Стресс фон Мизеса:

σ v =

1 - σ 2 ) 2 + (σ 2 - σ 3 ) 2 + (σ 1 - σ 3 ) 2

2

где σ 1 , σ 2 , σ 3 - главные напряжения.

Коэффициент запаса прочности является функцией расчетного напряжения и предела текучести. Следующее уравнение обозначает коэффициент безопасности, f s .

Где Y S - предел текучести, а D S - расчетное напряжение

Дополнительную информацию см. На странице «Существенные условия и ссылки».

Связанный:

  • Прочность материалов Методы измерения момента площади для расчета прогиба в балках, спецификации и характеристики материалов - черные и цветные, опорные колонны и изгиб, момент инерции, модуль упругости сечения, радиусы вращательных уравнений, треугольные, шестигранные сечения Момент инерции, Модуль сечения, радиусы круговых уравнений, эксцентрические формы, момент инерции, модуль сечения, радиусы вращения
  • Сопротивление материалов Н.М. Беляев Премиум-подписка на 648 страниц, необходимая для просмотра документа / книги
  • Прогиб балки и расчет конструкции
  • Сечение Момент площади Калькуляторы инерции
  • Допуски, пределы технического проектирования и посадки

© Copyright 2000-2020, Engineers Edge, LLC www.Engineedge.com
Все права защищены
Отказ от ответственности | Обратная связь | Реклама | Контакт

Дата / Время:

.

Как определить силу самооценки (дневной мастер)

Сила индивидуального элемента (дневной хозяин 日 主) помогает аналитику определить, какие определенные аспекты жизни могут иметь положительное или отрицательное влияние на человека.

Например, если субъект (мужчина или женщина) обладает собственной стихией земли, тогда вода будет представлять его богатство.

Если у этого человека слабая земля, то вода еще больше ослабит элемент «я», поскольку первый утомится от грубого воздействия на второго.

Следовательно, богатство может быть не лучшим для этого человека.

Если у этого человека прочная земля, то вода ослабит элемент «я», чтобы приблизить его к достижению баланса. Таким образом, богатство пойдет на пользу этому человеку.

В приведенном выше базовом примере учитывается, что в анализе фэн-шуй и бази ни хорошо, ни плохо быть сильным или слабым.

Идеальным бази (если он есть) был бы сбалансированный.

Когда может быть определена сила личности человека, затем могут быть определены его благоприятные элементы.Концепция сбалансированной базы означает, что сильный дневной мастер будет отдавать предпочтение элементам, которые его ослабляют, а слабый - элементам, которые его усиливают.

Например, если у человека есть элемент слабого металла, земля и металл будут его благоприятными элементами. А если он прочный металл, то вода, огонь и дрова будут благоприятны.

Чтобы определить силу дневного мастера, необходимо принять во внимание 5 факторов.

  1. Поддерживающее расположение знаков
  2. Родился в сезон
  3. Жизненный этап земных ветвей
  4. Комбинации
  5. Укоренившийся дневной мастер

После вычисления чисел с указанными выше факторами, сила элемента Я должна быть ясна как день.

Вспомогательные символы

Самый простой и простой метод для наблюдения за силой элемента «я» - это поиск элементов поддержки, которые составляют 7 других персонажей, помимо элемента «я».

Из 7 персонажей, которые представлены элементами, более поддерживающие элементы означают более сильный элемент «я», а более неподдерживающие элементы будут означать более слабый элемент «я».

Например, если элемент «я» - это вода, то поддерживающими элементами будут металл и вода.Не путайте это с 10 богами.

Если в бази есть 4 или более персонажей, состоящих из воды или металла, то считается, что этот человек обладает сильной эгоистичностью.

И наоборот, если вода или металл составляют 3 или менее из остальных 7 символов, то это слабый элемент «я».

Обратите внимание, что дерево, земля и огонь ослабляют воду в соответствии с правилами 5 элементов.

Поддерживающие элементы различных самоэлементов перечислены ниже:

  • Дерево - вода, дерево
  • Пожар - дрова, огонь
  • Земля - ​​огонь, земля
  • Металл - земля, металл
  • Вода - металл, вода

Год рождения

В каждом из 4 сезонов - весны, лета, осени и зимы - господствовала стихия.

  • Пружина - дерево
  • Лето - огонь
  • Осень - металл
  • Зима - вода

Земля наиболее сильна в переходные периоды года.

Когда мы ищем благоприятные времена года со ссылкой на элемент «я», мы смотрим на земную ветвь на месячном столпе.

В таблице ниже указаны вспомогательные сезоны, представленные месячной ветвью со ссылкой на главный день.

Самоэлемент В сезон
Поддерживающий сезон
Дерево E3, E4, E5 E1, E12, E2
Пожар E6, E7, E8 E3, E4, E5
Земля E2, E5, E8, E11 E6, E7, E8
Металл E9, E10, E11 E8, E11
Вода E1, E12, E2 E9, E10, E11

Здесь можно сослаться на легенду к вышеприведенной таблице.

То, рождается ли кто-то в сезон, имеет большое значение для определения силы личности.

Настолько, что когда земная ветвь месячного столпа состоит из того же элемента, что и элемент «я», почти наверняка у этого индивидуума будет сильный элемент «я», обнажающий необычные конфигурации бази.

Если, например, дневной хозяин человека - дерево и родился весной, мы вряд ли сможем убедиться, что у него сильный элемент «я», когда все остальные 6 знаков - все из металла.

Расширенные показания бази с учетом того, на какую фазу или в какой день сезона рождения приходится день рождения человека. Это играет роль в оценке силы и помогает определить, является ли элемент «я» «горячим или холодным» и «сухим или влажным».

Например, хотя Вэй (E8) - это сезон огня и земли по календарю, мы все знаем, что это период, приближающийся к концу лета и началу осени. Таким образом, жара не такая сильная, как во время Ву (E7).

Эти подробные детали могут на самом деле более точно определить дневную силу человека.

Однако нужно сказать, что вдаваться в такие мелкие детали часто нет необходимости, если мы не пытаемся точно указать что-то очень конкретное.

Например, если человек имеет избыточный вес, он имеет избыточный вес. Конкретное указание того, какой у нее избыточный вес, не изменит того факта, что поддержание идеального диапазона веса приведет к более здоровому телу.

Стадии жизни

После построения бази, чтобы определить, поддерживают ли земные ветви в бази элемент «я», мы должны обратиться к этапам жизни, на которых находятся годовая, дневная и часовая ветви.

Ветвь месяца опущена, поскольку она уже используется для определения того, родился ли этот человек в сезон.

Здесь объясняются 12 ступеней базисных столбов.

Чем сильнее жизненная стадия земной ветви, тем больше она будет поддерживать элемент «я» и тем сильнее будет элемент «я».

Комбинации

Когда встречаются определенные небесные стебли, они могут полностью трансформироваться в новые элементы. То же можно сказать и о земных ветвях.

Например, если у кого-то есть земной элемент Я, присутствие дерева h2 Jia может означать, что он постоянно находится под его атакой.

Однако дополнительное присутствие земли H5 Wu может привести к объединению h2 и H5 в землю при правильных условиях. Эффективно устраняет присутствие h2 или меняет его эффект с отрицательного на положительный.

Список возможных комбинаций и столкновений между стеблями и ветвями можно посмотреть здесь.

Как видите, это более высокий уровень анализа судьбы бази.И вам следует пытаться расшифровать их только тогда, когда у вас есть полное представление об основах.

Укрепленный дневной мастер

Концепция укоренения в бази относится к присутствию небесных стеблей внутри скрытых стеблей, содержащихся в ветвях., Которые аналогичны тем, что содержатся в исходных бази.

Например, если дерево h3 Yi находится на месячном столбе, и есть присутствие Mao, Chen или Wei на любом из столбов, то можно заметить, что h3 можно найти как скрытые стебли во всех 3 упомянутых ветвях. .

Это означает, что h3 укоренен.

Укрепленный дневной мастер обнаружит, что его характер присутствует в виде скрытых стеблей в земных ветвях. Это признак того, что в нем есть скрытая внутренняя сила, которую не показывает фасад.

На самом деле, некоторые эксперты-бази считают это единственным наиболее важным фактором при определении того, является ли Я-элемент сильным или слабым.

Необходимость суждения

Вас может разочаровать, если вы поймете, что не существует жесткого правила для определения силы дневного мастера.

Хотя приведенное выше руководство, вероятно, поможет вам определить силу дневного мастера большую часть времени, конфигурации бази часто могут потребовать от мастера фэн-шуй практики суждения.

Вот почему мы часто видим в сети ожесточенные споры и дебаты по поводу интерпретации бази. Потому что люди не согласны с суждениями и мнениями других.

Это также важная причина, по которой экспертам бази часто нужно задавать вопросы о прошлом человека, о котором идет речь.

Это сделано для того, чтобы прошлые события можно было использовать для сопоставления с динамикой бази.Помогаем читателю бази понять, что означают определенные стебли и ответвления для кого-то с сильной или слабой эгоистичностью.

.

Прочность на растяжение - Простая английская Википедия, бесплатная энциклопедия

Прочность на растяжение - это мера силы, необходимой для того, чтобы натянуть что-либо, например канат, проволоку или несущую балку, до точки разрыва.

Предел прочности материала на разрыв - это максимальное значение растягивающего напряжения, которое он может выдержать до разрушения, например разрушения.

Существует три типичных определения прочности на разрыв:

  • Предел текучести - напряжение, которое материал может выдержать без остаточной деформации.Это не четко очерченная точка. Предел текучести - это напряжение, которое вызовет остаточную деформацию 0,2% от первоначального размера.
  • Максимальная прочность - максимальное напряжение, которое может выдержать материал.

Некоторые типичные значения прочности на растяжение некоторых материалов:

Типичная прочность на разрыв некоторых материалов
Материал Предел текучести
(МПа)
Предел прочности
(МПа)
Плотность
(г / см³)
Конструкционная сталь Сталь ASTM A36 250 400 7.8
Сталь, API 5L X65 (Fikret Mert Veral) 448 531 7,8
Сталь, высокопрочный сплав ASTM A514 690 760 7,8
Maraging_Steel, марка 350 2400 2500 8,1
Стальная проволока 7,8
Сталь, струна г.2000 7,8
Полиэтилен высокой плотности (HDPE) 26-33 37 0,95
Полипропилен 12-43 19,7-80 0,91
Нержавеющая сталь AISI 302 - холоднокатаная 520 860 8,03;
Чугун 4,5% C, ASTM A-48 130 (??) 200 7,3;
Титановый сплав (6% Al, 4% V) 830 900 4.51
Алюминиевый сплав 2014-T6 400 455 2,7
Медь 99,9% Cu 70 220 8,92
Купроникель 10% Ni, 1,6% Fe, 1% Mn, остальное Cu 130 350 8,94
Латунь 250
Вольфрам 1510 19.25
Стекло (St Gobain "R") 4400 (3600 в композитном) 2,53
Бамбук 142 265 ,4
Мрамор НЕТ 15
Бетон НЕТ 3
Углеродное волокно НЕТ 5650 1,75
Паучий шелк 1150 (??) 1200
шелк шелкопряда 500
Кевлар 3620 1.44
Вектран 2850-3340
Сосна (параллельно волокнам) 40
Кость (конечность) 130
Нейлон, тип 6/6 45 75 1,15
Резина 15
Бор НЕТ 3100 2.46
Кремний, монокристаллический (m-Si) НЕТ 7000 2,33
Сапфир (Al 2 O 3 ) НЕТ 1900 3,9–4,1
Углеродные нанотрубки (см. Примечание ниже) НЕТ 62000 1,34
  • Примечание. Многослойные углеродные нанотрубки обладают наивысшим пределом прочности на разрыв из всех когда-либо измеренных материалов, и лаборатории производят их с пределом прочности на разрыв 63 ГПа, что все еще значительно ниже их теоретического предела в 300 ГПа.Однако по состоянию на 2004 год ни один макроскопический объект, построенный из углеродных нанотрубок, не имел прочности на разрыв, отдаленно приближающейся к этой цифре или существенно превышающей прочность высокопрочных материалов, таких как кевлар.
  • Примечание: многие значения зависят от производственного процесса и чистоты / состава.

(Источник: A.M. Howatson, P.G. Lund и J.D. Todd, «Engineering Tables and Data» p41)

.

Смотрите также