Как выглядит металл титан


Как определить титан и отличить его от других металлов?

Идентификация определенных металлов – точный и простой процесс только при наличии специального лабораторного оборудования, спектрометра в частности. В домашних условиях задача существенно усложняется. Особенно трудно отличать материалы, схожие по цвету и магнитным свойствам. Впрочем, даже в такой ситуации существуют проверенные на практике способы, как отличить титан от других металлов. Наибольший интерес для сравнения представляют алюминий и сталь, включая нержавейку. Тут, даже опытные мастера, регулярно работающие с металлами, и принимающие лом титана, не всегда способны четко идентифицировать, что у них конкретно в руках.

Как отличить титан от стали, алюминия

Первая пара – цветной и черный металлы. Большинство сталей обладают магнитным свойствами. Исключение составляют легированные металлы аустенитного класса. Яркий пример – нержавейка с высоким содержанием никеля. Эта марка стали, как и титан – парамагнетик. Поэтому стандартный вариант с использованием магнита тут неприемлем.

см. статьи:

Остаются три надежных способа как определить титан в домашних условиях:

  • математический;
  • графический;
  • абразивный;
  • гальванический.

Обозначения достаточно условны, далее раскроем каждый из вариантов подробно.

к содержанию ↑

Чистая математика

В этом подходе идентификация металлов производится по весу. Недостаток метода проявляется, когда в наличии только один тип металла. Определить в руках, что тяжелее уже не получится, приходится прибегнуть к математическим вычислениям. Способствует этому существенные отличия в плотности металлов:

  • титан – 4.5;
  • железа – 7.8;
  • алюминия и дюрали – 2.7.

Для такого способа определения титана в своем хозяйстве нужно иметь точные весы

Значения параметра приведены в г/куб.см. Остается добавить, что плотность стали зависит от конкретной марки металла. Однако в абсолютных величинах эти отличия несущественны. Поэтому за плотность стали можно смело принимать значение аналогичной характеристики у железа.

Остается только уточнить объем и вес детали или куска металла. Далее, несложные вычисления, покажут, это алюминий, сталь или искомый металл – титан. Как определить объем детали сложной формы? Тут лучший вариант – закон Архимеда. Масса вытолкнутой жидкости, при погружении металлической конструкции, позволяет установить ее объем. Ситуацию упрощает плотность воды, эквивалентная 1 кг/куб.дм. Соответственно каждый грамм вытолкнутой жидкости равен одному кубическому сантиметру объема.

Конечно же  – это муторный, сложный и неточный способ, но для того, чтобы определить титан дома он имеет место быть.

Так выглядит металл титан

к содержанию ↑

Рисунки на стекле

Это наиболее доступный метод, как отличить титан в домашних условия, но им нужно овладеть и иметь опыт работы с титаном. Металл оставляет характерные несмываемые следы на стекле, кафеле. Достаточно провести заостренным краем металла по одному из указанных материалов. Это именно следы, а не царапины. Подобным способом часто разрисовывают окна общественного транспорта. Отмыть титановую графику на кафеле можно раствором плавиковой кислоты, связываться с ней следует предельно осторожно.

Это метод отличается простотой и эффективностью. Титан, вопреки бытующему мнению, оставляет след даже на загрязненном стекле. Так что обезжиривать его поверхность не обязательно. Напротив, любые марки стали и алюминия способны разве что едва поцарапать стекло. Это отличный метод, чтобы определить титан.

к содержанию ↑

Абразивный круг

Идеальный способ как отличить титан от нержавейки для владельцев точильного станка (что, на самом деле, совсем не обязательно). Впрочем, подойдет практически любая абразивная поверхность, даже асфальт. Контакт титана с абразивом сопровождается россыпью искр насыщенно-белого цвета. Взаимодействие стали с абразивной поверхностью характеризуется желтым или красным оттенком. Искр при этом существенно меньше.

Нержавеющие марки стали – пожаробезопасны. Обработка определенных марок нержавейки происходит вообще без искр. Это свойство используется на пожароопасных производствах. Там допускаются исключительно инструменты из нержавеющей стали. Аналогичная методика применяется в вопросе как отличить титан от алюминия. Стачивание последнего на абразивном круге также происходит практически без искр.

Этот способ определения титана можно назвать самым эффективным – цвет искры действительно будет отличным от других металлов. Вообще, тест на искру является одним из самых популярных и правильных для определения и распознования разных металлов.

Видео – как отличить титан от магния и алюминия:

к содержанию ↑

Гальванический подход

Другой верный способ как узнать титан, доступен прямо в гараже. Методика основана на окрашивании этого металла посредством анодирования. Простейшая конструкция «лабораторной установки» представляет автомобильный аккумулятор, плюс которого соединен с титановой пластиной. К минусу источника постоянного тока подключают металлический стержень, обмотанный ватой смоченной в кока-коле. Идеальный вариант – любой соляной раствор.

Если провести ватой по титану, металл окрасится в течение нескольких секунд. Цвет, получаемый в процессе формирования оксидной пленки, зависит от приложенного напряжения и времени обработки поверхности. Впрочем, если задача стоит как определить титан от нержавейки, то тональность окраски не важна. Главный критерий – изменение цвета.

Видео – как отличить титан от стали данным способом:

к содержанию ↑

Прочие методики

Существует ряд альтернативных способов, как определить титан в руках или алюминий, например. Один из вариантов – тонкая стружка. В случае титана она легко воспламеняется и ярко горит. Напротив, алюминиевая стружка плавится. При помещении «металлических опилок» дюралюминия в щелочной раствор наблюдается активное выделение водорода.

Следующий способ как отличить металл титан от стали и алюминия – теплопроводность. Численные значения параметра Вт/(м·K) для указанных металлов составляют:

  • титан – 14;
  • сталь низкоуглеродистая – 55;
  • нержавейка – 16;
  • алюминий – 250.

Титановые изделия более теплые в руках. Конечно, подход не характеризуется высокой точностью, а для отличия титана от нержавеющей стали – вообще непригоден.

к содержанию ↑

Резюме

Как видно, даже в домашних условиях, отличить титан от алюминия и стали вполне реально. Наиболее практичные варианты – искра и стекло. Для первого случая достаточно любой абразивной поверхности, даже асфальта или застывшего бетона. Яркое искрение титана успешно используют байкеры, устанавливая на обувь подковы из этого металла. След на стекле – выгоден тем, что металл не повреждается. Относительный недостаток – некоторые титановые сплавы рисунка не оставляют. Но для чистого метала это оптимальный вариант.

фактов о титане | Живая наука

Есть ли какой-нибудь элемент, напоминающий о силе, как титан? Названный в честь титанов, греческих богов мифов, 22-й элемент периодической таблицы появляется в авиалайнерах, палках для лакросса, пирсинге, медицинском оборудовании и даже солнцезащитном креме.

Титан устойчив к коррозии, отличается особой прочностью и легкостью. По данным Лос-Аламосской национальной лаборатории, он прочен, как сталь, но его вес составляет всего 45 процентов.И он вдвое прочнее алюминия, но только на 60 процентов тяжелее.

Только факты

  • Атомный номер (количество протонов в ядре): 22
  • Атомный символ (в Периодической таблице элементов): Ti
  • Атомный вес (средняя масса атома): 47,867
  • Плотность : 4,5 грамма на кубический сантиметр
  • Фаза при комнатной температуре: твердое вещество
  • Точка плавления: 3034,4 градуса по Фаренгейту (1668 градусов по Цельсию)
  • Точка кипения: 5948.6 F (3 287 C)
  • Количество изотопов: 18; пять стабильны
  • Наиболее распространенные изотопы: Титан-46, Титан-47, Титан-48, Титан-49 и Титан-50

(Изображение предоставлено Грегом Робсоном / Creative Commons, Андрей Маринкас Shutterstock)

Элемент супергероя

Для элемента, обладающего сверхспособностями, титан имеет подходящую историю происхождения: он выкован в недрах сверхновых звезд или коллапсирующих звезд. Исследование конкретной умирающей звезды, Supernova 1987A, в 2012 году показало, что одна сверхновая может создать по массе радиоактивный изотоп титана-44, равный 100 земным шарам.

Титан является девятым по распространенности металлом в земной коре, согласно Chemicool, но он не был открыт до 1791 года. Английский геолог-любитель преподобный Уильям Грегор обнаружил черный металлический песок в русле ручья, проанализировал его и обнаружил быть смесью магнетита, обычной формы оксида железа и нового металла. Грегор назвал его манакканитом в честь прихода, в котором он обнаружил песок.

Четыре года спустя немецкий ученый по имени Мартин Генрих Клапрот изучал руду из Венгрии, когда обнаружил, что она содержит никогда ранее не описанный химический элемент.Он назвал его титаном, а позже подтвердил, что манакканит Грегора тоже содержал титан.

Первым, кто перегонял титан в чистую форму, был М.А. Хантер, сотрудник General Electric, по данным Королевского химического общества (RSC). Однако только в 1930-х годах Уильям Дж. Кролл изобрел процесс, который сделал возможным извлечение титана в промышленных масштабах. Так называемый процесс Кролла сначала обрабатывает руду оксида титана хлором с получением хлорида титана.Затем магний или натрий смешиваются с хлоридом титана в газообразном аргоне (пропуск кислорода в процесс действительно был бы довольно взрывоопасным, учитывая, что титан очень реактивен по отношению к кислороду, согласно RSC). При температуре 2192 F (1200 ° C) магний или натрий восстанавливают хлорид титана до чистого титана. По данным RSC, этот процесс примерно в 10 000 раз менее эффективен, чем процесс, используемый для производства железа, что помогает объяснить, почему титан является более дорогим металлом.

Титан - переходный металл, что означает, что он может образовывать связи, используя электроны более чем с одной из своих оболочек или уровней энергии. Он разделяет эту особенность с другими переходными металлами, включая золото, медь и ртуть.

Кто знал?

  • По данным RSC, почти каждая магматическая порода - горная порода, образовавшаяся в результате затвердевания расплавленной породы - содержит титан.
  • По данным компании, Boeing 737 Dreamliner на 15 процентов изготовлен из титана.
  • Титан сейчас вращается вокруг планеты: по данным НАСА, у Международной космической станции (МКС) есть ряд деталей из титана, включая трубы.Rosetta Project, исследовательское и архивное предприятие, целью которого является сохранение человеческих языков и мышления, также вывезло гравированный кусок чистого титана за пределы МКС, чтобы увидеть, как он противостоит радиации и суровым условиям космоса.
  • Земля - ​​не единственное место, где можно найти титан. В 2011 году на спутниковой карте поверхности Луны были обнаружены скопления богатых титаном горных пород. Эти породы часто содержат до 10 процентов титана по сравнению с 1 процентом или около того, обычно наблюдаемыми в земных породах.
  • Титан можно использовать в качестве сырья для 3D-печати. В 2013 году исследователи из Австралийской организации научных и промышленных исследований Содружества Наций напечатали на 3D-принтере пару легких титановых подков для скаковых лошадей. Туфли были стильного ярко-розового цвета.

Диоксид титана

Диоксид титана (TiO 2 ), также называемый оксидом титана (IV) или диоксидом титана, представляет собой встречающийся в природе оксид титана. Белый пигмент, диоксид титана, используется в красках (как титановый белила или пигментный белый 6) и солнцезащитных кремах из-за его способности преломлять свет и поглощать ультрафиолетовые лучи.По данным Геологической службы США, 95 процентов добываемого титана превращается в пигменты из диоксида титана, а оставшиеся 5 процентов идут на производство химикатов, металлов, карбидов и покрытий.

Диоксид титана также широко используется в медицине, косметике и зубной пасте и все чаще используется в качестве пищевой добавки (как E171) для отбеливания продуктов или придания им более непрозрачного вида. Некоторые из наиболее распространенных пищевых продуктов с добавлением E171 включают глазурь, жевательную резинку, зефир и добавки.

Нет ограничений на использование диоксида титана в пищевых продуктах. Однако новое исследование на мышах, опубликованное в журнале Gut, показывает, что частицы диоксида титана могут сильно повредить кишечник людей с определенными воспалительными заболеваниями кишечника.

Исследователи из Цюрихского университета в Швейцарии обнаружили, что, когда клетки кишечника поглощают частицы диоксида титана, слизистая оболочка кишечника мышей, переболевших колитом, воспаляется и повреждается, говорится в пресс-релизе исследования.

Воспалительные заболевания кишечника, такие как болезнь Крона и язвенный колит, в течение многих лет увеличивались в западных странах. Эти состояния характеризуются крайней аутоиммунной реакцией на кишечную флору. Несколько факторов играют роль в развитии болезни, включая генетические факторы и факторы окружающей среды, такие как образ жизни и питание. Швейцарские исследователи обнаружили, что наночастицы диоксида титана, обычно содержащиеся в зубной пасте и многих пищевых продуктах, могут еще больше усугубить эту воспалительную реакцию.

Кроме того, более высокие концентрации частиц диоксида титана могут быть обнаружены в крови пациентов с язвенным колитом. Это означает, что эти частицы могут поглощаться из пищи при определенных заболеваниях, объясняют исследователи в пресс-релизе.

Хотя результаты еще не были подтверждены на людях, исследователи предполагают, что пациентам с колитом следует избегать приема внутрь частиц диоксида титана.

Титан - легкий и прочный металл, часто используемый в машинах, инструментах, спортивном снаряжении и ювелирных изделиях.(Изображение предоставлено Кристианом Лагереком Shutterstock)

Текущее исследование

Диоксид титана имел головокружительный набор функций в мире технологий, от приложений солнечных батарей до биосовместимых датчиков, сказал Джей Нараян, ученый-материаловед из Университета Северной Каролины.

В 2012 году Нараян и его коллеги сообщили о способе «настройки» диоксида титана, адаптировав его для конкретных приложений. Этот материал имеет две кристаллические структуры, называемые «рутил» и «анатаз», каждая из которых имеет свои свойства и функции.Обычно диоксид титана любит находиться в фазе анатаза при температуре ниже 932 F (500 C) и превращается в фазу рутила при более высоких температурах.

Выращивая кристалл за кристаллом диоксида титана и выстраивая их на шаблоне из триоксида титана, Нараян и его коллеги смогли установить фазу материала как рутил или анатаз при комнатной температуре, как они сообщили в июне 2012 года в журнал Applied Physics Letters. Сделав еще больший скачок, исследователи смогли интегрировать этот диоксид титана в компьютерные чипы.

«Оксид титана также является очень хорошим сенсорным материалом, поэтому, если он интегрирован с компьютерным чипом, он действует как интеллектуальный датчик», - сказал Нараян Live Science. Поскольку датчик является частью микросхемы, устройство может реагировать быстрее и эффективнее, чем если бы датчик был отдельным и должен был быть жестко подключен к вычислительной части устройства.

Вывод продукта на рынок потребует снижения производственных затрат, сказал Нараян, но у "настраиваемого" диоксида титана есть и другие перспективы.Путем воздействия на материал мощных лазерных импульсов исследователи могут создавать небольшие дефекты, называемые кислородными вакансиями, где в материале отсутствуют молекулы кислорода. Затем этот материал можно использовать для расщепления воды (h3O) путем похищения кислорода и оставления водорода, который затем можно использовать для производства водородного топлива.

«Это дешевый и чистый источник энергии», - сказал Нараян. Новые производственные и инженерные методы расширяют возможности использования титана. Управление военно-морских исследований объявило в 2012 году, что новый метод сварки титана будет использован для производства полноразмерного корпуса корабля; По мнению ВМФ, эта конструкция является прорывом, поскольку титан, как правило, слишком дорог и сложен в производстве для судостроения.Новый метод, называемый сваркой трением с перемешиванием, использует вращающийся металлический штифт для частичного плавления краев двух кусков титана вместе.

В медицине титановые имплантаты используются для замены или стабилизации сломанной кости. Крошечные титановые имплантаты используются даже для улучшения слуха у людей с некоторыми типами глухоты. Титановый стержень в форме винта просверливается в черепе за ухом и прикрепляется к внешнему блоку обработки звука. Внешний блок улавливает звуки и передает вибрацию через титановый имплант во внутреннее ухо, минуя любые проблемы в среднем ухе.

В 2010 году исследователи объявили о разработке «Tifoam» - пенополиуретана, пропитанного порошком титана. Согласно исследованию 2013 года, опубликованному в журнале Acta Biomaterialia, пористая структура имитирует человеческую кость и позволяет костным клеткам человека проникать в имплант и сливаться с ним по мере заживления человека.

Дополнительный отчет от Трейси Педерсен, участника Live Science.

Следуйте за Стефани Паппас на Twitter Google+ .Следуйте за нами @livescience , Facebook и Google+ .

Дополнительные ресурсы

.

A WONDER METAL

A WONDER METAL
| |

История титана необычна. Начнем с того, что его обнаружили дважды. Британский ученый Уильям Грегор первым нашел его и назвал менаханитом, а шесть лет спустя, в 1797 году, М. Клапрот, немецкий химик, также нашел его и дал ему нынешнее название.

В течение многих лет титан интересовал только химиков-исследователей - он считался слишком хрупким, чтобы иметь какое-либо практическое значение. Однако именно примеси, с которыми он обычно ассоциировался (он легко образует соединения почти со всеми известными элементами), сделали его хрупким.

Во многих странах химикам стоило бесконечных усилий выделить чистый титан и даже дороже начать его коммерческое производство. В 1948 году мировые запасы чистого титана составляли всего десять тонн.Сегодня объем производства намного больше.

Титан обладает одним удивительным свойством - он полностью инертен в биологических средах, что быстро заметили медицинское сообщество. Из него делают искусственные суставы и многое другое, что необходимо в хирургии в Центральном институте травматологии и ортопедии им. Приорова. Инструменты из титана не подвержены коррозии и на 30 процентов легче инструментов из нержавеющей стали.

Титан обладает высокими стандартами коррозионной стойкости, легкости, прочности на растяжение, а также простоты ковки, прокатки и штамповки находит все большее применение.Титановые сплавы очень полезны в машиностроении, а также в химических и огнеупорных устройствах. Титан помог конструкторам преодолеть звуковые и тепловые барьеры при проектировании сверхзвуковых и высотных самолетов. На земле показывает хорошую работу на химических предприятиях, в целлюлозно-бумажной и пищевой промышленности. Более того, это до сих пор вызывает удивление у следователя.

Группа исследователей института под руководством профессора. Корнилов И., д.т.н.(Химия) произвела материал с своего рода памятью, как показывает следующий эксперимент: тонкая изогнутая полоска нового сплава была зажата на подставке, а на свободный конец подвешен груз весом 500 грамм. В течение нескольких секунд пропускали ток, в результате чего полосу нагревали до температуры более 100 ° C. Словно по команде загадочной силы, он распрямился, как тугая пружина, и поднял груз. При отключении тока полоса постепенно возвращалась к своей первоначальной форме. Цикл повторялся несколько раз, и полоска всегда запоминала свою первоначальную форму.Невооруженным глазом можно увидеть удивительное явление прямого преобразования тепловой энергии в механическую.

Объяснение кроется в кристаллических модификациях титан-никелевого сплава, которые, изменяясь с температурой, также снова меняются.

Благодаря этому материал обладает памятью и особыми акустическими свойствами. При комнатной температуре сплав, называемый никелоидом титана, становится мягким, пластичным и не издает характерного металлического звука при ударе.Однако при нагревании до определенной температуры он становится твердым, упругим и звенящим.

Несомненно, это явление найдет какое-то необычное применение в будущем - даже на этой ранней стадии ясно, что сплавы на основе титана и никелоида будут полезны во многих областях. Например, в чувствительных звукоснимателях, которые активируются при изменении температуры, это акустика для звукопоглощения и т. Д. И т. Д.

Титан и его сплавы выходят в коммерческую область - они уже сделали себе имя в качестве конструкционных материалов.

ТЕКСТ 4


: 2015-09-11; : 9 |

ТЕНДЕНЦИИ В СОВРЕМЕННОМ МАШИНОСТРОЕНИИ | ПРОМЫШЛЕННЫЙ ИНЖЕНЕР И АВТОМАТИЗАЦИЯ | КЛАССИФИКАЦИЯ АВТОМАТИЧЕСКИХ ТРАНСФЕРНЫХ ЛИНИЙ | Управление качеством | ЧТО ЕСЛИ СТАНДАРТОВ НЕ СУЩЕСТВОВАЛ? | МЕЖДУНАРОДНАЯ ОРГАНИЗАЦИЯ ПО СТАНДАРТИЗАЦИИ | Генеральный директор INTEL О НЕОБХОДИМОСТИ МЕЖДУНАРОДНЫХ СТАНДАРТОВ | Машиностроение | | Числовое программное управление |

лекции.net -.- 2014-2020 гг. (0,007.) .

Замена тазобедренного сустава может длиться вечно после того, как будет обнаружен новый металл, заменяющий титан

Сверхтвердый металл, который в ЧЕТЫРЕ раза прочнее титана, может означать, что замена тазобедренного сустава будет длиться вечно

  • Лабораторный металл теперь является самым твердым из известных металлических материалов
  • Сверхпрочный сплав частично сделан из золота
  • Может использоваться для значительного продления срока службы зубных имплантатов и суставов
  • Невероятная прочность металла была обнаружена случайно

Автор MailOnline Reporter

Опубликовано: | Обновлено:

Титан используется для изготовления искусственных коленных и тазобедренных суставов, потому что он очень прочный, но теперь ученые придумали что-то еще лучшее.

Согласно новому исследованию, изготовленный в лаборатории металл, который в четыре раза тверже, чем титан, в настоящее время является самым твердым из известных металлических веществ, которые можно использовать для имплантатов у людей.

Титан - один из немногих металлов, вокруг которых человеческие кости способны прочно расти, но обычно имплантаты необходимо заменять примерно через десять лет.

Помимо создания основы для более прочных имплантатов бедра и колена, сплав также может иметь более широкий спектр применения, включая инженерные детали и спортивное оборудование. к-1 смесь титана и золота.

Металлический сплав образуется при высоких температурах для получения почти чистой кристаллической формы бета-титан-3-золота.

Кубическая кристаллическая структура делает вещество в четыре раза тверже титана.

Благодаря своей невероятной прочности и простоте изготовления, новую смесь титана и золота в соотношении 3: 1 можно использовать для производства имплантатов коленного и бедренного суставов, которые служат намного дольше, а возможно, и навсегда.

Сверхпрочные свойства бета-титана-3-золота исследовали исследователи из Университета Райса.

«Он в четыре раза тверже чистого титана, который в настоящее время используется в большинстве зубных имплантатов и суставов для замены». сказал ведущий ученый профессор Эмилия Моросан,

Атомная структура материала - плотно упакованные атомы в кубической форме - была известна ранее, и исследователи, возможно, даже не были первыми, кто создал сплав, но они первые документально подтвердили его невероятную прочность. .

Титан (на фото) - один из немногих металлов, вокруг которых человеческие кости способны прочно расти, но имплантаты обычно необходимо заменять примерно через десять лет

Исследователи случайно наткнулись на открытие, работая над существующим исследованием и попытка испытать новое соединение путем измельчения его в порошок для рентгеновских целей.

«Когда мы пытались измельчить титан-золото, у нас ничего не вышло», - вспоминает профессор Моросан. «Я даже купил ступку с алмазным покрытием и пестик, но мы все равно не могли их измельчить».

Во время последующих испытаний они проверили сплав 3 к 1, который они использовали в своем первоначальном исследовании.

При формировании сплава при более низких температурах он не уступает по прочности титану, говорится в исследовании.

Однако при образовании при высоких температурах титан-3-золото становится в четыре раза тверже из-за измененной атомной структуры.

После серии испытаний, проведенных совместно с лабораторией турбомашин Техасского университета A&M и в Национальной лаборатории сильного магнитного поля в Университете штата Флорида, исследователи пришли к выводу, что этот металл можно использовать для значительного продления срока службы заменителей бедра и колена, а также зубные имплантаты.

Кубическая кристаллическая структура бета-титана-3 золота отвечает за его невероятную прочность и образуется только тогда, когда сплав создается при высоких температурах.

Помимо создания основы для более прочных имплантатов бедра и колена, сплав также может имеют более широкий спектр применения, включая инженерные детали и спортивное оборудование.

Исследователи намерены провести дальнейшие испытания, чтобы изучить структуру бета-титана-3-золота и посмотреть, можно ли улучшить его твердость.

Исследование было опубликовано в журнале Science Advances.

Поделитесь или прокомментируйте эту статью:

.

Simple English Wikipedia, бесплатная энциклопедия

Некоторые химические элементы называются металлами . Они являются большинством элементов периодической таблицы. Эти элементы обычно обладают следующими свойствами:

  1. Они могут проводить электричество и тепло.
  2. Их легко сформировать.
  3. У них блестящий вид.
  4. Они имеют высокую температуру плавления.

Большинство металлов остаются твердыми при комнатной температуре, но это не обязательно.Ртуть жидкая. Сплавы - это смеси, в которых хотя бы одна часть смеси представляет собой металл. Примеры металлов: алюминий, медь, железо, олово, золото, свинец, серебро, титан, уран и цинк. Хорошо известные сплавы включают бронзу и сталь.

Изучение металлов называется металлургией.

Признаки сходства металлов (свойства металлов) [изменить | изменить источник]

Большинство металлов твердые, блестящие, они кажутся тяжелыми и плавятся только при очень высоких температурах.Куски металла издают звон колокольчика при ударе чего-то тяжелого (они звонкие). Тепло и электричество могут легко проходить через металл (он проводящий). Кусок металла можно разбить на тонкий лист (он ковкий) или растянуть на тонкую проволоку (он пластичный). Металл трудно разорвать (у него высокая прочность на разрыв) или разбить (у него высокая прочность на сжатие). Если надавить на длинный тонкий кусок металла, он согнется, а не сломается (он эластичный). За исключением цезия, меди и золота, металлы имеют нейтральный серебристый цвет.

Не все металлы обладают этими свойствами. Ртуть, например, жидкая при комнатной температуре, свинец очень мягкий, а тепло и электричество не проходят через железо так, как через медь.

Мост в России металлический, вероятно, железный или стальной.

Металлы очень полезны людям. Их используют для изготовления инструментов, потому что они могут быть прочными и легко поддающимися обработке. Из железа и стали строили мосты, здания или корабли.

Некоторые металлы используются для изготовления таких предметов, как монеты, потому что они твердые и не изнашиваются быстро.Например, медь (блестящая и красного цвета), алюминий (блестящая и белая), золото (желтая и блестящая), а также серебро и никель (также белые и блестящие).

Некоторые металлы, например сталь, можно делать острыми и оставаться острыми, поэтому их можно использовать для изготовления ножей, топоров или бритв.

Редкие металлы с высокой стоимостью, такие как золото, серебро и платина, часто используются для изготовления ювелирных изделий. Металлы также используются для изготовления крепежа и шурупов. Кастрюли, используемые для приготовления пищи, могут быть сделаны из меди, алюминия, стали или железа.Свинец очень тяжелый и плотный, и его можно использовать в качестве балласта на лодках, чтобы не допустить их опрокидывания или защитить людей от ионизирующего излучения.

Многие изделия, сделанные из металлов, на самом деле могут быть сделаны из смесей по крайней мере одного металла с другими металлами или с неметаллами. Эти смеси называются сплавами. Некоторые распространенные сплавы:

Люди впервые начали делать вещи из металла более 9000 лет назад, когда они обнаружили, как получать медь из [] руды. Затем они научились делать более твердый сплав - бронзу, добавляя к ней олово.Около 3000 лет назад они открыли железо. Добавляя небольшое количество углерода в железо, они обнаружили, что из них можно получить особенно полезный сплав - сталь.

В химии металл - это слово, обозначающее группу химических элементов, обладающих определенными свойствами. Атомы металла легко теряют электрон и становятся положительными ионами или катионами. Таким образом, металлы не похожи на два других вида элементов - неметаллы и металлоиды. Большинство элементов периодической таблицы - металлы.

В периодической таблице мы можем провести зигзагообразную линию от элемента бора (символ B) до элемента полония (символ Po). Элементы, через которые проходит эта линия, - это металлоиды. Элементы, расположенные выше и справа от этой линии, являются неметаллами. Остальные элементы - это металлы.

Большинство свойств металлов обусловлено тем, что атомы в металле не очень крепко удерживают свои электроны. Каждый атом отделен от других тонким слоем валентных электронов.

Однако некоторые металлы отличаются. Примером может служить металлический натрий. Он мягкий, плавится при низкой температуре и настолько легкий, что плавает на воде. Однако людям не следует пробовать это, потому что еще одно свойство натрия состоит в том, что он взрывается при соприкосновении с водой.

Большинство металлов химически стабильны и не вступают в реакцию легко, но некоторые реагируют. Реактивными являются щелочные металлы, такие как натрий (символ Na) и щелочноземельные металлы, такие как кальций (символ Ca). Когда металлы действительно вступают в реакцию, они часто реагируют с кислородом.Оксиды металлов являются основными. Оксиды неметаллов кислые.

Соединения, в которых атомы металлов соединены с другими атомами, образуя молекулы, вероятно, являются наиболее распространенными веществами на Земле. Например, поваренная соль - это соединение натрия.

Кусок чистой меди, найденной как самородная медь

Считается, что использование металлов отличает людей от животных. Прежде чем использовать металлы, люди делали инструменты из камня, дерева и костей животных. Сейчас это называется каменным веком.

Никто не знает, когда был найден и использован первый металл. Вероятно, это была так называемая самородная медь, которую иногда находят большими кусками на земле. Люди научились делать из него медные инструменты и другие вещи, хотя для металла он довольно мягкий. Они научились плавке, чтобы получать медь из обычных руд. Когда медь плавили на огне, люди научились делать сплав под названием бронза, который намного тверже и прочнее меди. Из бронзы делали ножи и оружие.Это время в истории человечества примерно после 3300 г. до н.э. часто называют бронзовым веком, то есть временем бронзовых инструментов и оружия.

Примерно в 1200 году до нашей эры некоторые люди научились делать железные орудия труда и оружие. Они были даже тверже и прочнее бронзы, и это было преимуществом на войне. Время железных инструментов и оружия теперь называется железным веком. . Металлы были очень важны в истории человечества и цивилизации. Железо и сталь сыграли важную роль в создании машин. Золото и серебро использовались в качестве денег, чтобы люди могли торговать, то есть обмениваться товарами и услугами на большие расстояния.

В астрономии металл - это любой элемент, кроме водорода или гелия. Это потому, что эти два элемента (а иногда и литий) - единственные, которые образуются вне звезд. В небе спектрометр может видеть признаки металлов и показывать астроному металлы в звезде.

В организме человека некоторые металлы являются незаменимыми питательными веществами, такими как железо, кобальт и цинк. Некоторые металлы могут быть безвредными, например рутений, серебро и индий. Некоторые металлы могут быть токсичными в больших количествах. Другие металлы, такие как кадмий, ртуть и свинец, очень ядовиты.Источники отравления металлами включают горнодобывающую промышленность, хвостохранилища, промышленные отходы, сельскохозяйственные стоки, профессиональные воздействия, краски и обработанную древесину.

.

Смотрите также