Как влияют дислокации на механические свойства металлов


Дислокации и их влияние на структуру материала

Дислокациями называют линейные дефекты кристаллов, возникающие в процессе роста или пластической деформации. Различают краевые и винтовые дислокации, нарушающие правильное чередование атомных плоскостей.

Причиной краевой дислокации является отрыв одной из плоскостей внутри кристалла. Образование винтовой дислокации связано, в основном, с условиями роста кристалла, состоящего из одной атомной плоскости, изгибающейся по винтовой поверхности.

Дислокации в кристалле могут возникать при его росте и в том случае, когда растущие навстречу друг другу блоки или зерна повернуты один относительно другого. При срастании таких блоков образуются избыточные атомные плоскости, которые определяют текстуру реальных кристаллов.

Причиной образования дислокаций в кристалле могут быть также скопления точечных дефектов, в частности, вакансий.

В процессе пластической деформации происходит не одновременный сдвиг всех атомов данной плоскости, а последовательное перемещение связей между атомами, лежащими по обе стороны плоскости скольжения. Такое перераспределение связей предопределяет движение дислокаций от одной группы атомов к другой.

Количество дислокаций в кристаллических структурах очень велико. Число дислокационных линий, пересекающих 1 см2 внутри отожженных монокристаллов может достигать 104¸106 и более.

Схемы образования дислокаций представлены на рис. 3.4 и рис. 3.5.

а б

Рис. 3.4.Образование дислокаций на границах блоков:

а – два блока, растущих навстречу друг другу; б- дислокации, возникающие при срастании блоков

а б

Рис. 3.5. Образование дислокаций из скопления вакансий:

а - скопление вакансий в кристалле; б – положительная и отрицательная дислокации

Наличие дислокаций значительно снижает прочность реальных кристаллов, которые разрушаются при напряжениях, на несколько порядков меньших, чем идеальные.

Дислокации влияют на электрические, оптические, магнитные и другие свойства. Так, они повышают электросопротивление, снижают плотность, упругость, а также предельное напряжение сдвига материала. Последнее объясняется тем, что при сдвиге, т.е. при пластической деформации к имеющимся дислокациям присоединяются и вновь образованные.

Однако пластическая деформация и рост дефектов могут привести к упрочнению структуры. Это происходит в результате накопления дислокаций и взаимодействия их как между собой, так и с другими дефектами кристаллической решетки, что вызывает ее искажение и затрудняет перемещение дислокаций. Кроме того, атомы примесей, границы блоков, обособленные включения в решетки также затрудняют перемещение дислокаций, увеличивая сопротивление сдвигу.

Напрашивается вывод о положительной роли дислокаций, тем более, что в металловедении известны многие практические приемы упрочнения структуры металлов, такие как холодное деформирование (наклеп), введение примесей (легирование), создание обособленных включений (закалка) и др.

Следовательно, для упрочнения кристаллической структуры необходимо стремиться либо к большему развитию дефектов, либо к полному их устранению. На рис. 3.6 представлен график влияния роста дефектов на изменение прочности кристаллической структуры, который показывает, что максимальная прочность реальных кристаллов далека от теоретической.

Рис. 3.6. Зависимость сопротивления деформации от количества дефектов в кристалле

В продолжение освещения роли линейных дефектов, образующихся в процессе пластических деформаций в кристаллической структуре, необходимо заметить о возможности локального скопления дислокаций, которые могут вызвать местные концентрации напряжений. Последние, в сочетании с такими же локальными скоплениями дефектов, способны образовывать зародыши микротрещин, которые, как известно, являются основной причиной разрушения структуры.

Роль поверхностных и объемных дефектов в структурообразовании рассмотрим при изучении макроструктуры материалов.

Введение в неорганическую химию / металлы и сплавы: механические свойства

Из Wikibooks, открытые книги для открытого мира

Перейти к навигации Перейти к поиску
Ищите Введение в неорганическую химию / металлы и сплавы: механические свойства в одном из родственных проектов Викиучебника: Викиучебник не имеет страницы с таким точным названием.

Другие причины, по которым это сообщение может отображаться:

  • Если страница была создана здесь недавно, она может еще не отображаться из-за задержки обновления базы данных; подождите несколько минут и попробуйте функцию очистки.
  • Заголовки в Викиучебниках чувствительны к регистру , за исключением первого символа; пожалуйста, проверьте альтернативные заглавные буквы и подумайте о добавлении перенаправления здесь к правильному заголовку.
  • Если страница была удалена, проверьте журнал удалений и просмотрите политику удаления.
.

МЕХАНИЧЕСКИЕ СВОЙСТВА МЕТАЛЛОВ И СПЛАВОВ

Механические свойства имеют первостепенное значение в более крупных промышленных применениях металлов, поэтому они требуют большого внимания при их изучении.

Прочность. - Прочность материала - это свойство сопротивления внешним нагрузкам или напряжениям без повреждения конструкции. Термин «предел прочности » относится к удельному напряжению (фунты на квадратный дюйм), развиваемому в материале в результате максимальной медленно прикладываемой нагрузки, которой материал может выдержать без разрушения при испытании на растяжение.Испытание на растяжение чаще всего применяется к металлам, потому что оно говорит об их свойствах гораздо больше, чем любое другое отдельное испытание. В металлургии о разрушении часто говорят как об отказе, разрыве или разрушении; Разрыв металла - это название, данное поверхности, на которой произошел разрыв.

Прочность металлов и сплавов зависит от двух факторов, а именно, прочности кристаллов, из которых они состоят, и прочности сцепления между этими кристаллами.Самое сильное известное вещество - это вольфрамовая проволока электрических ламп накаливания. Чистое железо непрочно, но когда сталь легирована углеродом для получения стали, она может быть прочнее любого из чистых металлов, кроме вольфрама.

Напряжение и деформация. - Напряжение - это сила внутри тела, которая сопротивляется деформации из-за приложенной извне нагрузки. Если эта нагрузка действует на поверхность единичной площади, это называется единичной силой, а сопротивление ей - единиц. Таким образом, количественно напряжение - это сила на единицу площади; на европейском континенте он выражается в килограммах на квадратный миллиметр, в Соединенных Штатах - фунтах на квадратный дюйм, а в Англии обычно используются длинные тонны на квадратный дюйм.

Когда внешняя сила действует на эластичный материал, материал деформируется, и деформация пропорциональна нагрузке. Это искажение или деформация составляет деформаций, и единичная деформация измеряется в Соединенных Штатах и ​​в Англии в дюймах на дюйм, тогда как в Европе она измеряется в сантиметрах на сантиметр. Единичная деформация - это отношение расстояний или длин.

Эластичность. - Любой материал, подверженный внешней нагрузке, деформирован или деформирован.Упруго напряженные материалы возвращаются к своим первоначальным размерам при снятии нагрузки, если она не слишком велика. Такое искажение или деформация пропорциональна величине нагрузки до определенной точки, но когда нагрузка слишком велика, материал постоянно деформируется, а при дальнейшем увеличении нагрузки до определенной точки материал разрушается. Свойство восстановления исходных размеров после снятия внешней нагрузки известно как эластичность .

Модуль упругости. - В пределах эластичности отношение напряжения к деформации известно как модуль упругости (т.е. мера упругости).

Модуль упругости выражает жесткость материала. Для стали и большинства металлов это постоянное свойство, на которое мало влияет термическая обработка, горячая или холодная обработка или фактический предел прочности металла. Их модули упругости показывают, что когда стержни из стали и алюминия одинакового размера подвергаются одинаковой нагрузке, возникающая в результате упругая деформация в алюминии будет почти в три раза больше, чем в стальном стержне.



Пропорциональный предел упругости. - Металлы обычно не эластичны во всем диапазоне нагрузок. Предел пропорциональности напряжения к деформации известен как предел пропорциональности . Предел упругости - это максимальное удельное напряжение, которое испытываемый образец будет выдерживать и все еще возвращаться к своим исходным размерам после снятия нагрузки. Предел пропорциональности и предел упругости в металлах очень близки друг к другу, настолько, что их часто путают, и теперь принято объединять их в один термин «Предел пропорциональной упругости». Это важное свойство, напряжение, которое нельзя превышать при проектировании.

Природа эластичности. - Эластичность металлического вещества является функцией сопротивления его атомов разделению, сжатию или вращению друг относительно друга и, таким образом, является фундаментальным свойством материала. Итак, эластичность демонстрируется как функция атомных сил. Это объясняет, почему модуль упругости прочной и хрупкой термически обработанной легированной стали точно такой же, как у сравнительно слабой и вязкой отожженной стали.

Предел текучести. - Это точка на кривой "напряжение-деформация", в которой напряжение выравнивается или фактически уменьшается при продолжении деформации. Этот термин строго применим только к малоуглеродистым сталям, так как характеристика, которая его определяет, не встречается в других металлах, легированных сталях или даже холоднодеформированных или нормализованных низкоуглеродистых сталях.

Максимальная сила. - Наибольшая нагрузка, которую выдерживает образец, деленная на исходную площадь поперечного сечения, называется пределом прочности на разрыв или пределом прочности детали.

Пластичность. - Пластичность - это способность металла постоянно деформироваться при растяжении без разрушения. В частности, этот термин обозначает емкость, которую нужно тянуть от проволоки большего диаметра к меньшему. Такая операция, очевидно, включает в себя как удлинение, так и уменьшение площади, и значения этих двух характеристик металла, определенные при испытании на растяжение, обычно принимаются в качестве меры пластичности металла.

Прочность. - Вязкость определяется как свойство поглощения значительной энергии до разрушения. Это мера общей способности материала поглощать энергию, включая энергию как упругой, так и пластической деформации при постепенно прикладываемой нагрузке. Одним из самых распространенных тестов на ударную вязкость является «испытание на удар», в котором измеряется энергия, поглощенная при разрушении образца при внезапном ударе.

Природа прочности. - Прочность металла определяется степенью скольжения, которое может происходить внутри кристаллов, не приводя к разрушению металла.Возможно, это результат попеременного проскальзывания и расклинивания каждой клиновидной кристаллографической плоскости, удерживаемой до приложения большего напряжения. Хрупкий металл или сплав либо не перестанет скользить после достижения упругой деформации, либо остановится только на короткое время перед разрушением. Очевидно, что последовательная остановка и проскальзывание вызовут деформацию; поэтому вязкие металлы и сплавы часто являются наиболее пластичными и пластичными.

Иногда кристаллы металла могут быть прочными, но границы кристаллов могут содержать примеси, так что наименьшая деформация кристаллической массы может вызвать растрескивание через хрупкий материал границ зерен.Это справедливо для стали, содержащей значительное количество фосфора, и меди, содержащей висмут.

Ковкость. - Ковкость - это свойство металла, которое допускает остаточную деформацию при сжатии без разрушения. В частности, это означает способность раскатывать или забивать тонкие листы. Свойство пластичности похоже, но не то же самое, что и пластичность, и разные металлы не обладают этими двумя свойствами в одинаковой степени: хотя свинец и олово относительно высоки в порядке пластичности, им не хватает необходимой прочности на разрыв. быть втянутым в тонкую проволоку.Большинство металлов обладают повышенной ковкостью и пластичностью при более высоких температурах. Например, железо и никель очень пластичны при ярко-красном огне (1000 ° C).

Хрупкость. - Хрупкость подразумевает внезапный отказ. Это свойство ломаться без предупреждения, то есть без видимой остаточной деформации. Это противоположность ударной вязкости в том смысле, что хрупкое тело имеет небольшое сопротивление разрыву после достижения предела упругости. Хрупкость противоположна пластичности в том смысле, что она предполагает разрыв без значительной деформации.Часто твердые металлы хрупкие, но эти термины не следует путать или использовать как синонимы.

Усталостный отказ. - Если металл подвергается частым повторяющимся нагрузкам, он в конечном итоге разорвется и выйдет из строя.

Чередование стресса приведет к неудаче быстрее, чем повторение стресса. Под «чередованием напряжений» подразумевается попеременное растяжение и сжатие в любом волокне. Разрушение металлов и сплавов при повторяющихся или переменных напряжениях, слишком малых, чтобы вызвать даже остаточную деформацию при статическом применении, называется усталостным разрушением .

Коррозионная усталость. - Если элемент подвергается также воздействию коррозионных агентов, таких как влажная атмосфера или масло, не очищенное от кислоты, напряжение, необходимое для выхода из строя, намного ниже. Самые прочные стали не выдерживают усталости и коррозии при удельном напряжении волокна не более 24000 фунтов на квадратный дюйм, даже если их предел прочности может указывать на то, что они могут выдерживать гораздо более высокое напряжение. Интересно отметить, что удельное напряжение чрезвычайно прочной термически обработанной легированной стали, подверженной коррозионной усталости, будет не больше, чем у относительно слабой конструкционной стали.Очевидна важность защиты поверхностей усталостных элементов от коррозии с помощью цинкования, гальванизации и т. Д., Если и когда это возможно.

Твердость. - Качество твердости является сложным, и подробное исследование показало, что оно представляет собой комбинацию ряда физических и механических свойств. Его чаще определяют в терминах метода, используемого для его измерения, и обычно означает сопротивление вещества вдавливанию. Твердость также может быть определена с точки зрения устойчивости к царапинам и, таким образом, связана с износостойкостью.Термин твердость иногда используется для обозначения жесткости или состояния деформируемых изделий, поскольку твердость металла при вдавливании тесно связана с его пределом прочности при растяжении.

В инженерной практике сопротивление металла проникновению твердого инструмента для вдавливания обычно принимается как определяющее свойство твердости. Был разработан ряд стандартизированных испытательных машин и пенетраторов, наиболее распространенными из которых являются машины Бринелля, Роквелла и Виккерса.

В испытании Бринелля шарик из закаленной стали диаметром 10 мм вдавливается в поверхность испытываемого материала под нагрузкой 500 или 3000 кг и измеряется площадь вдавливания.Затем твердость по Бринеллю выражается как отношение приложенной нагрузки к площади слепка.

В тестах Роквелла используется несколько различных масштабов тестирования с использованием различных пенетраторов и нагрузок. Наиболее часто используемые шкалы - это шкала «C», в которой используется алмазный конусный пенетратор при основной нагрузке 150 кг, и шкала «B», в которой используется закаленный стальной шар диаметром 1/16 дюйма при основной нагрузке 100 кг. кг. В этом испытании в качестве меры твердости принимается разница глубины проникновения между глубиной проникновения малой нагрузки в 10 кг и приложенной основной нагрузкой.

В тесте Виккерса используется квадратный индентор в виде ромбовидной пирамиды, который может быть нагружен от 1 до 120 кг. Как и в тесте Бринелля, твердость выражается через приложенную нагрузку, деленную на площадь поверхности пирамидального отпечатка.

Тест Бринелля обычно используется только для довольно толстых срезов, таких как прутки и поковки, в то время как тест Роквелла обычно используется как для толстых, так и для тонких срезов, таких как полосы и трубки. Поверхностный Роквелл можно использовать для деталей толщиной до 0.010 дюймов. Тестер Виккерса чаще всего используется как лабораторный прибор для очень точных измерений твердости, а не как инструмент производственного контроля.

Склероскоп Шора измеряет упругость, а не твердость, хотя они взаимосвязаны. Склероскоп измеряет отскок падающего молотка от испытательной поверхности, и число твердости выражается как высота отскока в терминах максимального отскока от полностью закаленной высокоуглеродистой стали.

Природа твердости и мягкости. - Сопротивление металла проникновению другим телом, очевидно, частично зависит от силы сопротивления его межатомных связей. На это указывает почти точная параллель порядка твердости металлов и их модулей упругости. Единственное известное исключение - это соотношение магния и алюминия. Магний поцарапает алюминий, хотя его модуль упругости и средняя прочность межатомных связей меньше.


Дата: 24.12.2015; просмотр: 1238


.

σ = F / A o Краткое содержание главы Введение Механические свойства металлов Как металлы реагируют на внешние нагрузки?

Стресс-деформационные отношения

Взаимоотношения напряжений и деформаций Испытания на растяжение Одним из основных ингредиентов в изучении механики деформируемых тел являются резистивные свойства материалов.Эти свойства относятся к напряжениям

Дополнительная информация

Решение для домашнего задания №1

Решение домашнего задания № 1 Глава 2: вопросы с несколькими вариантами ответа (2.5, 2.6, 2.8, 2.11) 2.5 Какие из следующих типов облигаций классифицируются как первичные облигации (более одной)? (а) ковалентная связь, (б) водород

Дополнительная информация

Свойства материалов

ГЛАВА 1 Свойства материалов ВВЕДЕНИЕ Материалы являются движущей силой технологических революций и ключевыми ингредиентами производства.Материалы повсюду вокруг нас, и

Дополнительная информация

СВОЙСТВА МАТЕРИАЛОВ

1 СВОЙСТВА МАТЕРИАЛОВ 1.1 СВОЙСТВА МАТЕРИАЛОВ Различные материалы обладают разными свойствами в разной степени и, следовательно, ведут себя по-разному в данных условиях. Эти объекты

Дополнительная информация

Лаборатория испытаний на растяжение

Лаборатория испытаний на растяжение Стефан Фавилла 0723668 ME 354 AC Дата представления лабораторного отчета: 11 февраля 2010 г. Дата лабораторных испытаний: 28 января 2010 г. 1 Краткое содержание Испытания на растяжение являются фундаментальными

Дополнительная информация

Испытание стали на растяжение

C 265 Lab No.2: Испытание стали на растяжение См. Типичный формат отчета на веб-сайте, в том числе: TITL PAG, ABSTRACT, TABL OF CONTNTS, LIST OF TABL, LIST OF FIGURS 1.0 - INTRODUCTION See General Lab Report Format

Дополнительная информация

Концепции стресса и напряжения

ГЛАВА 6 МЕХАНИЧЕСКИЕ СВОЙСТВА МЕТАЛЛОВ РЕШЕНИЕ ПРОБЛЕМ Представления о напряжении и деформации 6.4 Цилиндрический образец из титанового сплава с модулем упругости 107 ГПа (15.5 10 6 фунтов на кв. Дюйм) и оригинальный

Дополнительная информация

КРИВЫЕ НАПРЯЖЕНИЯ-ДЕФЕКТА

КРИВЫЕ НАПРЯЖЕНИЯ-НАПРЯЖЕНИЯ Дэвид Ройланс Департамент материаловедения и инженерии Массачусетский технологический институт Кембридж, Массачусетс 02139 23 августа 2001 г. Введение Кривые напряжения-деформации очень сильно отличаются от

. Дополнительная информация

ПОДХОД STRAIN-LIFE (e -N)

ПОДХОД ЦИКЛИЧЕСКОЙ ДЕФОРМАЦИИ И ДЕФОРМАЦИИ (e -N) ИСПЫТАНИЕ НА МОНОТОННОЕ НАПРЯЖЕНИЕ И МЕТОДЫ ИСПЫТАНИЙ НА ДЕФОРМАЦИОННО-ДЕФОРМАЦИОННОЕ УПРАВЛЕНИЕ ЦИКЛИЧЕСКОЙ ДЕФОРМАЦИЕЙ И НАПРЯЖЕНИЕМ НА ОСНОВЕ НАПРЯЖЕНИЯ ПОДХОД К

Дополнительная информация

ПРАКТИЧЕСКИЕ ИСПЫТАНИЯ НА РАСТЯЖЕНИЕ

ПРАКТИЧЕСКИЕ ИСПЫТАНИЯ НА РАСТЯЖЕНИЕ MTK 2B - Наука о материалах Ц эпо Мпуцое 215024596 Резюме Материалы обладают разными свойствами, от механических до химических.Особый интерес к

Дополнительная информация

Анализ структурной целостности

Анализ целостности конструкции 1. КОНЦЕНТРАЦИЯ НАПРЯЖЕНИЙ Игорь Кокчаров 1.1 НАПРЯЖЕНИЯ И КОНЦЕНТРАТОРЫ 1.1.1 Напряжение Приложенная внешняя сила F вызывает внутренние силы в несущей конструкции. Внутренние силы

Дополнительная информация

σ y (ε f, σ f) (ε f

Типичные кривые напряжение-деформация для мягкой стали и алюминиевого сплава по результатам испытаний на растяжение LL (1 + ε) A = --- A uu 0 1 E l Излом мягкой стали u (ε f, f) (ε f, f) ε 0 ε 0.2 = 0,002 излом алюминиевого сплава

Дополнительная информация

УСТАЛОСТЬ В ДИЗАЙНЕ

РАССМОТРЕНИЕ УСТАЛОСТИ В ЦЕЛЯХ И ОБЪЕМЕ ПРОЕКТИРОВАНИЯ В этом модуле мы обсудим аспекты проектирования, связанные с усталостным разрушением, важным видом отказа в технических компонентах. Усталостное разрушение

Дополнительная информация

Долговременные характеристики полимеров

1.0 Введение Долговременные характеристики полимеров Полимерные материалы показывают поведение в зависимости от времени. Напряжение и деформация, возникающие при приложении нагрузки, зависят от времени. В самом общем виде

Дополнительная информация

Lösungen Übung Verformung

Lösungen Übung Verformung 1. а) Что означает T G? (б) К каким материалам он применяется? (c) Как это влияет на ударную вязкость и на диаграмму напряжения-деформации? 2.Назовите четыре основных

Дополнительная информация

КРИТЕРИИ ДЛЯ ЗАГРУЖЕННЫХ БОЛТОВ

Национальное управление по аэронавтике и исследованию космического пространства Космический центр Линдона Б. Джонсона, Хьюстон, Техас, 77058, ВЕРСИЯ ОТ 6 ИЮЛЯ 1998 ГОДА ЗАМЕНЯЕТ КРИТЕРИИ БАЗОВОГО КОСМИЧЕСКОГО ШАТУНТА ДЛЯ ПРЕДВАРИТЕЛЬНЫХ БОЛТОВ СОДЕРЖАНИЕ 1.0 ВВЕДЕНИЕ ... ............................

Дополнительная информация

8.2 Энергия упругой деформации

Раздел 8. 8. Энергия упругой деформации Энергия деформации, запасенная в упругом материале при деформации, рассчитывается ниже для ряда различных геометрических форм и условий нагружения. Эти выражения для

Дополнительная информация

МЕХАНИКА МАТЕРИАЛОВ

Т диция CHTR MCHNICS OF MTRIS Ferdinand. Пиво. Рассел Джонстон-младший. Джон Т. ДеВольф.Уолт Олер, Техасский технологический университет, осевое напряжение и деформация - Содержание: Напряжение и деформация: осевое нагружение

Дополнительная информация

Затвердевший бетон. Лекция № 14

Лекция по затвердевшему бетону № 14 Прочность бетона Прочность бетона обычно считается его самым ценным свойством, хотя во многих практических случаях и другие характеристики, такие как долговечность

Дополнительная информация

15.МОДУЛЬ УПРУГОСТИ

Глава 5 Модуль упругости 5. МОДУЛЬ УПРУГОСТИ Модуль упругости (= модуль Юнга) E - это свойство материала, которое описывает его жесткость и, следовательно, является одним из наиболее важных

Дополнительная информация

РЕЗЮМЕ ЛЕКЦИИ 30 сентября 2009 г.

РЕЗЮМЕ ЛЕКЦИИ 30 сентября 2009 г. Ключевые темы лекции Кристаллические структуры в связи с системами скольжения. Решенное напряжение сдвига с использованием стереографической проекции для определения плоскостей скольжения активной системы скольжения

Дополнительная информация

КЕРАМИКА: Свойства 2

КЕРАМИКА: Свойства 2 (Анализ хрупкого разрушения) S.К. БЕЙН, 1 J.Y. Томпсон 2 1 Школа стоматологии Мичиганского университета, Анн-Арбор, Мичиган 48109-1078 [email protected] 2 Юго-восточный стоматологический колледж Нова

Дополнительная информация

ОБЪЯСНЕНИЕ СОВМЕСТНЫХ ДИАГРАММ

ОБЪЯСНЕНИЕ СХЕМ СОЕДИНЕНИЙ Когда болтовые соединения подвергаются внешним растягивающим нагрузкам, какие силы и упругая деформация действительно существуют? Большинство инженеров в производстве крепежа

Дополнительная информация

Лекция 14.Глава 8-1

Лекция 14 Усталость и ползучесть технических материалов (Глава 8) Глава 8-1 Усталость Усталость = разрушение под действием приложенного циклического напряжения. сжатие образца на верхнем подшипнике подшипника двигателя встречная гибкая муфта

Дополнительная информация

HW 10. = 3,3 ГПа (483000 фунтов на кв. Дюйм)

HW 10 Задача 15.1 Модуль упругости и предел прочности полиметилметакрилата при комнатной температуре [20 C (68 F)].Сравните их с соответствующими значениями в таблице 15.1. Рисунок 15.3 является точным;

Дополнительная информация

Законы напряжения-деформации материалов

5 Законы растяжения-деформирования материалов 5 Лекция 5: ЗАКОНЫ О НАПРЯЖЕНИИ И МАТРИАЛАХ ТАБЛИЦА СОДЕРЖАНИЯ Стр. 5. Введение ..................... 5 3 5.2. ............... 5 3 5.2. Поведение материала

Дополнительная информация

МАТЕРИАЛЫ И МЕХАНИКА ГИБКИ

ГЛАВА Проектирование железобетонных конструкций Пятое издание МАТЕРИАЛЫ И МЕХАНИЗМЫ ИЗГИБА A.Школа инженеров Дж. Ларка, Департамент гражданской и экологической инженерии, часть I, проектирование и анализ бетона b FALL

Дополнительная информация

Статика и механика материалов

Статика и механика материалов Глава 4-1 Внутренняя сила, нормальная и касательная Напряжение Очертания Внутренние силы - плоскость сечения Результат взаимного притяжения (или отталкивания) между молекулами на обоих

Дополнительная информация

Конечно в.Нелинейный МКЭ

Курс во введении Краткое содержание лекции 1 Введение Лекция 2 Геометрическая нелинейность Лекция 3 Нелинейность материала Лекция 4 Продолжение нелинейности материала Лекция 5 Еще раз о геометрической нелинейности

Дополнительная информация .

Механические свойства

Механические свойства

Механические свойства материала - это те свойства, которые связаны с реакцией на приложенную нагрузку. Механические свойства металлов определяют диапазон полезности материала и определяют ожидаемый срок службы. Механические свойства также используются для классификации и идентификации материала. Наиболее распространенными рассматриваемыми свойствами являются прочность, пластичность, твердость, ударопрочность и вязкость разрушения.

Большинство конструкционных материалов являются анизотропными, что означает, что их свойства материала зависят от ориентации. Различия в свойствах могут быть обусловлены направленностью микроструктуры (текстуры) в результате операций формования или холодной обработки, контролируемым выравниванием армирования волокном и множеством других причин. Механические свойства обычно зависят от формы продукта, такого как лист, пластина, экструзия, литье, ковка и т. Д. Кроме того, обычно можно увидеть механические свойства, перечисленные в виде направленной зернистой структуры материала.В таких продуктах, как лист и пластина, направление прокатки называется продольным направлением, ширина продукта называется поперечным направлением, а толщина называется коротким поперечным направлением. Ориентация зерен в металлических изделиях стандартной формы показана на изображении.

Механические свойства материала не являются постоянными и часто меняются в зависимости от температуры, скорости нагрузки и других условий. Например, температуры ниже комнатной обычно вызывают повышение прочностных свойств металлических сплавов; в то время как пластичность, вязкость разрушения и удлинение обычно снижаются.Температуры выше комнатной обычно вызывают снижение прочностных свойств металлических сплавов. Пластичность может увеличиваться или уменьшаться с повышением температуры в зависимости от одних и тех же переменных.

Следует также отметить, что часто наблюдается значительная вариабельность значений, полученных при измерении механических свойств. На первый взгляд идентичный образец для испытаний из одной партии материала часто дает существенно разные результаты. Поэтому для определения механических свойств обычно проводят несколько испытаний, и сообщаемые значения могут быть средним значением или вычисленным минимальным статистическим значением.Кроме того, иногда указывается диапазон значений, чтобы показать изменчивость.

.

Смотрите также