Как повысить прочность металлов и сплавов


легирование, наклеп, термическое упрочнение. — Студопедия.Нет

Легирование — добавление в состав материалов примесей для изменения (улучшения) физических и/или химических свойств основного материала. Легирование является обобщающим понятием ряда технологических процедур, различают объёмное (металлургическое) и поверхностное (ионное, диффузное и др.) легирование.

Для улучшения физических, химических, прочностных и технологических свойств металлы легируют, вводя в их состав различные легирующие элементы. Для легирования сталей используются хром, марганец, никель, вольфрам, ванадий, ниобий, титан и другие элементы. Небольшие добавки кадмия в медь увеличивают износостойкость проводов, добавки цинка в медь и бронзу — повышают прочность, пластичность, коррозионную стойкость. Легирование титана молибденом более чем вдвое повышает температурный предел эксплуатации титанового сплава благодаря изменению кристаллической структуры металла. Легированные металлы могут содержать один или несколько легирующих элементов, которые придают им специальные свойства.

Легирующие элементы вводят в сталь для повышения её конструкционной прочности. Основной структурной составляющей в конструкционной стали является феррит, занимающий в структуре не менее 90 % по объёму. Растворяясь в феррите, легирующие элементы упрочняют его. Твердость феррита (в состоянии после нормализации) наиболее сильно повышают кремний, марганец и никель. Молибден, вольфрам и хром влияют слабее. Большинство легирующих элементов, упрочняя феррит и мало влияя на пластичность, снижают его ударную вязкость (за исключением никеля). Главное назначение легирования:

· повышение прочности стали без применения термической обработки путём упрочнения феррита растворением в нём легирующих элементов;

· повышение твёрдости, прочности и ударной вязкости в результате увеличения устойчивости аустенита и тем самым увеличения прокаливаемости;

· придание стали специальных свойств, из которых для сталей, идущих на изготовление котлов, турбин и вспомогательного оборудования, особое значение имеют жаропрочность и коррозионная стойкость.

Легирующие элементы могут растворяться в феррите или аустените, образовывать карбиды, давать интерметаллические соединения, располагаться в виде включений, не взаимодействуя с ферритом и аустенитом, а также с углеродом. В зависимости от того, как взаимодействует легирующий элемент с железом или углеродом, он по-разному влияет на свойства стали. В феррите в большей или меньшей степени растворяются все элементы. Растворение легирующих элементов в феррите приводит к упрочнению стали без термической обработки. При этом твердость и предел прочности возрастают, а ударная вязкость обычно снижается. Все элементы, растворяющиеся в железе, изменяют устойчивость феррита и аустенита. Критические точки легированных сталей смещаются в зависимости от того, какие легирующие элементы и в каких количествах присутствуют в ней. Поэтому при выборе температур под закалку, нормализацию и отжиг или отпуск необходимо учитывать смещение критических точек.

Наклёп (нагартовка) — упрочнение металлов и сплавов вследствие изменения их структуры и фазового состава в процессе пластической деформации при температуре ниже температуры рекристаллизации.

Наклеп металла является одним из способов упрочнения металлического изделия. Происходит это благодаря пластической деформации, которой такое изделие подвергают при температуре, находящейся ниже температуры рекристаллизации. Деформирование в процессе наклепа приводит к изменению как внутренней структуры, так и фазового состава металла. В результате таких изменений в кристаллической решетке возникают дефекты, которые выходят на поверхность деформируемого изделия. Естественно, эти процессы приводят и к изменениям механических характеристик металла. В частности, с ним происходит следующее:

· повышается твердость и прочность;

· снижаются пластичность и ударная вязкость, а также сопротивляемость к деформациям, имеющим противоположный знак;

· ухудшается устойчивость к коррозии

 

Термической (тепловой) обработкой называются процессы, сущность которых заключается в нагреве и охлаждении изделий по определенным режимам, в результате чего происходят изменения структуры, фазового состава, механических и физических свойств материала, без изменения химического состава.

Термическую обработку применяют на различных стадиях производства деталей машин и металлоизделий. В одних случаях она может быть промежуточной операцией, служащей для улучшения обрабатываемости сплавов давлением, резанием, в других – является окончательной операцией, обеспечивающей необходимый комплекс показателей механических, физических и эксплуатационных свойств изделий или полуфабрикатов. Полуфабрикаты подвергают термической обработке для улучшения структуры, снижения твердости (улучшения обрабатываемости), а детали – для придания им определенных, требуемых свойств (твердости, износостойкости, прочности и других).

В результате термической обработки свойства сплавов могут быть изменены в широких пределах. Возможность значительного повышения механических свойств после термической обработки по сравнению с исходным состоянием позволяет увеличить допускаемые напряжения, уменьшить размеры и массу машин и механизмов, повысить надежность и срок службы изделий. Улучшение свойств в результате термической обработки позволяет применять сплавы более простых составов, а поэтому более дешевые. Сплавы приобретают также некоторые новые свойства, в связи с чем расширяется область их применения.

металлургия | Определение и история

Использование металлов в настоящее время является кульминацией долгого пути развития, продолжающегося примерно 6 500 лет. Принято считать, что первыми известными металлами были золото, серебро и медь, которые находились в самородном или металлическом состоянии, причем самыми ранними из них, по всей вероятности, были самородки золота, найденные в песках и гравии русел рек. Такие самородные металлы стали известны и ценились за их декоративные и утилитарные ценности во второй половине каменного века.

Ранняя разработка

Золото можно агломерировать в более крупные куски холодным молотком, а самородная медь - нет, и важным шагом к эпохе металлов стало открытие, что металлам, таким как медь, можно придавать формы путем плавления и литья в формах; Среди самых ранних известных изделий этого типа - медные топоры, отлитые на Балканах в IV тысячелетии до нашей эры. Следующим шагом стало открытие возможности извлечения металлов из металлосодержащих минералов. Они были собраны, и их можно было различить по цвету, текстуре, весу, цвету пламени и запаху при нагревании.Заметно больший выход, полученный при нагревании самородной меди с соответствующими оксидными минералами, мог привести к процессу плавки, поскольку эти оксиды легко восстанавливаются до металла в угольном слое при температурах, превышающих 700 ° C (1300 ° F), в качестве восстановителя. , окись углерода, становится все более стабильной. Чтобы осуществить агломерацию и отделение расплавленной или плавленной меди от связанных с ней минералов, необходимо было ввести оксид железа в качестве флюса. Этот дальнейший шаг вперед можно объяснить присутствием госсановых минералов оксида железа в выветрившихся верхних зонах месторождений сульфида меди.

Во многих регионах медно-мышьяковые сплавы, превосходящие медь по свойствам как в литой, так и в деформируемой форме, были произведены в следующий период. Поначалу это могло быть случайным из-за сходства цвета и цвета пламени между ярко-зеленым минералом карбоната меди малахитом и выветрившимися продуктами таких минералов сульфида меди и мышьяка, как энаргит, и, возможно, позже за этим последовал целенаправленный отбор соединений мышьяка из-за запаха чеснока при нагревании.

Получите эксклюзивный доступ к контенту из нашего первого издания 1768 с вашей подпиской. Подпишитесь сегодня

Содержание мышьяка варьировалось от 1 до 7 процентов, до 3 процентов олова. Медные сплавы, в основном не содержащие мышьяка, с более высоким содержанием олова - другими словами, настоящая бронза - появились между 3000 и 2500 годами до нашей эры, начиная с дельты Тигра и Евфрата. Открытие ценности олова могло произойти благодаря использованию станнита, смешанного сульфида меди, железа и олова, хотя этот минерал не так широко доступен, как основной минерал олова, касситерит, который, должно быть, был конечным источником металла.Касситерит поразительно плотный и встречается в виде гальки в аллювиальных отложениях вместе с арсенопиритом и золотом; в определенной степени это также встречается в упомянутых выше госсанах из оксида железа.

Несмотря на то, что бронзовая культура могла развиваться независимо в разных местах, наиболее вероятно, что культура бронзы распространилась через торговлю и миграцию народов с Ближнего Востока в Египет, Европу и, возможно, Китай. Во многих цивилизациях производство меди, мышьяковистой меди и оловянной бронзы продолжалось некоторое время вместе.Возможное исчезновение медно-мышьяковых сплавов трудно объяснить. Производство могло быть основано на минералах, которые не были широко доступны и стали дефицитными, но относительный дефицит оловянных минералов не препятствовал существенной торговле этим металлом на значительные расстояния. Возможно, что в конечном итоге предпочтение было отдано оловянной бронзе из-за вероятности отравления мышьяком от паров, образующихся при окислении минералов, содержащих мышьяк.

По мере того, как выветрившиеся медные руды в данных местах разрабатывались, более твердые сульфидные руды под ними добывались и плавились.Используемые минералы, такие как халькопирит, сульфид меди и железа, нуждались в окислительном обжиге для удаления серы в виде диоксида серы и получения оксида меди. Это потребовало не только более высоких металлургических навыков, но и окисления тесно связанного железа, что в сочетании с использованием флюсов из оксида железа и более жесткими восстановительными условиями, создаваемыми улучшенными плавильными печами, привело к более высокому содержанию железа в бронзе.

Невозможно провести четкую границу между бронзовым и железным веками.Небольшие куски железа могли быть произведены в медеплавильных печах, поскольку использовались флюсы оксида железа и железосодержащие сульфидные руды меди. Кроме того, более высокие температуры печи могли бы создать более сильные восстановительные условия (то есть более высокое содержание оксида углерода в топочных газах). Первый кусок железа, найденный на железнодорожных путях в провинции Дренте, Нидерланды, был датирован 1350 годом до нашей эры, датой, обычно считающейся средним бронзовым веком для этой местности. С другой стороны, в Анатолии железо использовалось еще в 2000 году до нашей эры.Иногда встречаются упоминания о железе и в более ранние периоды, но этот материал был метеорного происхождения.

После того, как была установлена ​​связь между новым металлом, обнаруженным в медных плавках, и рудой, добавленной в качестве флюса, естественно последовала работа печей для производства железа. Конечно, к 1400 г. до н. Э. В Анатолии железо приобрело большое значение, а к 1200–1000 гг. До н. Э. Оно в довольно больших масштабах превращалось в оружие, первоначально лезвия кинжалов.По этой причине 1200 г. до н.э. был принят за начало железного века. Свидетельства раскопок указывают на то, что искусство производства железа зародилось в горной стране к югу от Черного моря, в районе, где преобладали хетты. Позже это искусство, по-видимому, распространилось среди филистимлян, поскольку в Гераре были обнаружены неочищенные печи, датируемые 1200 годом до н. Э., Вместе с рядом железных предметов.

Плавка оксида железа с древесным углем требовала высокой температуры, и, поскольку температура плавления железа 1540 ° C (2800 ° F) была недостижима в то время, продукт представлял собой просто губчатую массу пастообразных глобул металла, смешанных с полужидкостью. шлак.Этот продукт, позже известный как блюм, вряд ли можно было использовать в том виде, в каком он стоял, но повторный нагрев и обработка горячим молотком удалили большую часть шлака, создав кованое железо, гораздо более качественный продукт.

На свойства железа сильно влияет присутствие небольшого количества углерода, при этом значительное увеличение прочности связано с содержанием менее 0,5%. При достижимых в то время температурах - около 1200 ° C (2200 ° F) - восстановление с помощью древесного угля дает почти чистое железо, которое было мягким и имело ограниченное применение для оружия и инструментов, но когда соотношение топлива к руде было увеличено и вытяжка печи с изобретением более совершенного сильфона, железо поглотило больше углерода.Это привело к появлению блюмов и продуктов из железа с различным содержанием углерода, что затрудняет определение периода, в течение которого железо могло быть намеренно упрочнено за счет науглероживания или повторного нагрева металла в контакте с избытком древесного угля.

Углеродсодержащее железо имело еще одно большое преимущество, заключающееся в том, что, в отличие от бронзы и безуглеродистого железа, его можно было сделать еще более твердым путем закалки, то есть быстрого охлаждения путем погружения в воду. Нет никаких доказательств использования этого процесса закалки в раннем железном веке, так что он, должно быть, был либо неизвестен тогда, либо не считался выгодным, поскольку закалка делает железо очень хрупким и должно сопровождаться отпуском или повторным нагревом в более низкая температура, чтобы восстановить прочность.То, что, кажется, было установлено на раннем этапе, было практикой многократной холодной ковки и отжига при 600–700 ° C (1100–1300 ° F), температуре, которая достигается естественным путем при простом огне. Эта практика распространена в некоторых частях Африки даже сегодня.

К 1000 г. до н. Э. Железо стало известно в Центральной Европе. Его использование медленно распространилось на запад. Производство железа было довольно широко распространено в Великобритании во время римского вторжения в 55 г. до н. Э. В Азии железо было известно еще в древности, в Китае около 700 г. до н. Э.

.

МЕХАНИЧЕСКИЕ СВОЙСТВА МЕТАЛЛОВ И СПЛАВОВ

Механические свойства имеют первостепенное значение в более крупных промышленных применениях металлов, поэтому они требуют большого внимания при их изучении.

Прочность. - Прочность материала - это свойство сопротивления внешним нагрузкам или напряжениям без повреждения конструкции. Термин «предел прочности » относится к удельному напряжению (фунты на квадратный дюйм), развиваемому в материале в результате максимальной медленно прикладываемой нагрузки, которой материал может выдержать без разрушения при испытании на растяжение.Испытание на растяжение наиболее часто применяется к металлам, потому что оно говорит об их свойствах гораздо больше, чем любое другое отдельное испытание. В металлургии о разрушении часто говорят как об отказе, разрыве или разрушении; перелом металла - это название, данное поверхности, на которой произошел перелом.

Прочность металлов и сплавов зависит от двух факторов, а именно, прочности кристаллов, из которых они состоят, и прочности сцепления между этими кристаллами.Самое сильное известное вещество - это вольфрамовая проволока электрических ламп накаливания. Чистое железо непрочно, но когда сталь легирована углеродом для получения стали, она может быть прочнее любого из чистых металлов, кроме вольфрама.

Напряжение и деформация. - Напряжение - это сила внутри тела, которая сопротивляется деформации из-за приложенной извне нагрузки. Если эта нагрузка действует на поверхность единичной площади, это называется единичной силой, а сопротивление ей - единиц. Таким образом, количественно напряжение - это сила на единицу площади; на европейском континенте он выражается в килограммах на квадратный миллиметр, в Соединенных Штатах - фунтах на квадратный дюйм, а в Англии обычно используются длинные тонны на квадратный дюйм.

Когда внешняя сила действует на эластичный материал, материал деформируется, и деформация пропорциональна нагрузке. Это искажение или деформация составляет деформаций, и единичная деформация измеряется в Соединенных Штатах и ​​в Англии в дюймах на дюйм, тогда как в Европе она измеряется в сантиметрах на сантиметр. Единичная деформация - это отношение расстояний или длин.

Эластичность. - Любой материал, подверженный внешней нагрузке, деформирован или деформирован.Упруго напряженные материалы возвращаются к своим первоначальным размерам при снятии нагрузки, если она не слишком велика. Такое искажение или деформация пропорциональна величине нагрузки до определенной точки, но когда нагрузка слишком велика, материал постоянно деформируется, а при дальнейшем увеличении нагрузки до определенной точки материал разрушается. Свойство восстановления исходных размеров после снятия внешней нагрузки известно как эластичность .

Модуль упругости. - В пределах эластичности отношение напряжения к деформации известно как модуль упругости (то есть мера упругости).

Модуль упругости выражает жесткость материала. Для стали и большинства металлов это постоянное свойство, на которое мало влияет термическая обработка, горячая или холодная обработка или фактический предел прочности металла. Их модули упругости показывают, что когда стержни из стали и алюминия одинакового размера подвергаются одинаковой нагрузке, возникающая в результате упругая деформация в алюминии будет почти в три раза больше, чем в стальном стержне.



Пропорциональный предел упругости. - Металлы обычно не эластичны во всем диапазоне нагрузок. Предел пропорциональности напряжения к деформации известен как предел пропорциональности . Предел упругости - это наивысшее удельное напряжение, которое испытываемый образец будет выдерживать и все еще возвращаться к своим исходным размерам после снятия нагрузки. Предел пропорциональности и предел упругости в металлах очень близки друг к другу, настолько, что их часто путают, и теперь принято объединять их в один термин «Предел пропорциональной упругости». Это важное свойство, напряжение, которое нельзя превышать при проектировании.

Природа эластичности. - Эластичность металлического вещества является функцией сопротивления его атомов разделению, сжатию или вращению друг относительно друга и, таким образом, является фундаментальным свойством материала. Итак, эластичность демонстрируется как функция атомных сил. Это объясняет, почему модуль упругости прочной и хрупкой термически обработанной легированной стали точно такой же, как у сравнительно слабой и вязкой отожженной стали.

Предел текучести. - Это точка на кривой "напряжение-деформация", в которой напряжение выравнивается или фактически уменьшается при продолжении деформации. Этот термин строго применим только к мягким сталям, поскольку определяющая его характеристика не встречается в других металлах или легированных сталях, или даже в холоднодеформированных или нормализованных низкоуглеродистых сталях.

Максимальная сила. - Наибольшая нагрузка, которую выдержал образец, деленная на первоначальную площадь поперечного сечения, называется пределом прочности на разрыв или пределом прочности детали.

Пластичность. - Пластичность - это способность металла постоянно деформироваться при растяжении без разрушения. В частности, этот термин обозначает емкость, которую нужно тянуть от проволоки большего диаметра к меньшему. Такая операция, очевидно, включает как удлинение, так и уменьшение площади, и значения этих двух характеристик металла, определенные при испытании на растяжение, обычно принимаются в качестве меры пластичности металла.

Прочность. - Вязкость определяется как свойство поглощения значительной энергии до разрушения. Это мера общей способности материала поглощать энергию, включая энергию как упругой, так и пластической деформации при постепенно прикладываемой нагрузке. Одним из самых распространенных тестов на ударную вязкость является «испытание на удар», в котором измеряется энергия, поглощенная при разрушении образца при внезапном ударе.

Природа прочности. - Прочность металла определяется степенью скольжения, которое может происходить внутри кристаллов, не приводя к разрушению металла.Возможно, это результат попеременного проскальзывания и расклинивания каждой клиновидной кристаллографической плоскости, удерживаемой до приложения большего напряжения. Хрупкий металл или сплав либо не перестанет скользить после достижения упругой деформации, либо остановится только на короткое время перед разрушением. Очевидно, что последовательная остановка и проскальзывание вызовут деформацию; поэтому вязкие металлы и сплавы часто являются наиболее пластичными и пластичными.

Иногда кристаллы металла могут быть прочными, но границы кристаллов могут содержать примеси, так что наименьшая деформация кристаллической массы может вызвать растрескивание через хрупкий материал границ зерен.Это верно для стали, содержащей значительное количество фосфора, и для меди, содержащей висмут.

Ковкость. - Ковкость - это свойство металла, которое допускает остаточную деформацию при сжатии без разрушения. В частности, это означает способность раскатывать или забивать тонкие листы. Свойство пластичности похоже, но не то же самое, что и пластичность, и разные металлы не обладают этими двумя свойствами в одинаковой степени: хотя свинец и олово относительно высоки в порядке пластичности, им не хватает необходимой прочности на разрыв. быть втянутым в тонкую проволоку.Большинство металлов обладают повышенной ковкостью и пластичностью при более высоких температурах. Например, железо и никель очень пластичны при ярко-красном огне (1000 ° C).

Хрупкость. - Хрупкость подразумевает внезапный отказ. Это свойство ломаться без предупреждения, то есть без видимой остаточной деформации. Это противоположность вязкости в том смысле, что хрупкое тело имеет небольшое сопротивление разрыву после достижения предела упругости. Хрупкость противоположна пластичности в том смысле, что она предполагает разрыв без значительной деформации.Часто твердые металлы хрупкие, но эти термины не следует путать или использовать как синонимы.

Усталостный отказ. - Если металл подвергается частым повторяющимся нагрузкам, он в конечном итоге разорвется и выйдет из строя.

Чередование стресса приведет к неудаче быстрее, чем повторение стресса. Под «чередованием напряжения» понимается попеременное растяжение и сжатие в любом волокне. Разрушение металлов и сплавов при повторяющихся или переменных напряжениях, слишком малых, чтобы вызвать даже остаточную деформацию при статическом применении, называется усталостным разрушением .

Коррозионная усталость. - Если элемент подвергается также воздействию коррозионных агентов, таких как влажная атмосфера или масло, не очищенное от кислоты, напряжение, необходимое для выхода из строя, намного ниже. Самые прочные стали не выдерживают усталости и коррозии при удельном напряжении волокна не более 24000 фунтов на квадратный дюйм, даже если их предел прочности может указывать на то, что они могут выдерживать гораздо более высокое напряжение. Интересно отметить, что удельное напряжение чрезвычайно прочной термически обработанной легированной стали, подверженной коррозионной усталости, будет не больше, чем у относительно слабой конструкционной стали.Очевидна важность защиты поверхностей усталостных элементов от коррозии с помощью цинкования, гальванизации и т. Д., Если и когда это возможно.

Твердость. - Качество твердости является сложным, и подробное исследование показало, что оно представляет собой комбинацию ряда физических и механических свойств. Это чаще всего определяется в терминах метода, используемого для его измерения, и обычно означает сопротивление вещества вдавливанию. Твердость также может быть определена с точки зрения устойчивости к царапинам и, таким образом, связана с износостойкостью.Термин твердость иногда используется для обозначения жесткости или состояния деформируемых изделий, поскольку твердость металла при вдавливании тесно связана с его пределом прочности на разрыв.

В инженерной практике сопротивление металла проникновению твердого инструмента для вдавливания обычно принимается как определяющее свойство твердости. Был разработан ряд стандартизированных испытательных машин и пенетраторов, наиболее распространенными из которых являются машины Бринелля, Роквелла и Виккерса.

При испытании Бринелля шарик из закаленной стали диаметром 10 мм вдавливается в поверхность испытываемого материала под нагрузкой 500 или 3000 кг и измеряется площадь вдавливания.Затем твердость по Бринеллю выражается как отношение приложенной нагрузки к площади слепка.

В тестах Rockwell используется ряд различных масштабов тестирования с использованием различных пенетраторов и нагрузок. Чаще всего используются шкалы «C», в которых используется алмазный конусный пенетратор при основной нагрузке 150 кг, и шкала «B», в которой используется закаленный стальной шар диаметром 1/16 дюйма при основной нагрузке 100 кг. кг. В этом испытании в качестве меры твердости принимается разница глубины проникновения между глубиной проникновения малой нагрузки в 10 кг и приложенной основной нагрузкой.

В испытании Виккерса используется квадратный индентор в виде ромбовидной пирамиды, который может быть нагружен от 1 до 120 кг. Как и в тесте Бринелля, твердость выражается через приложенную нагрузку, деленную на площадь поверхности пирамидального отпечатка.

Тест Бринелля обычно используется только для довольно толстых срезов, таких как прутки и поковки, в то время как тест Роквелла обычно используется как для толстых, так и для тонких срезов, таких как полосы и трубки. Поверхностный Роквелл можно использовать для деталей толщиной до 0.010 дюймов. Тестер Виккерса чаще всего используется как лабораторный прибор для очень точных измерений твердости, а не как инструмент производственного контроля.

Склероскоп Шора измеряет упругость, а не твердость, хотя они взаимосвязаны. Склероскоп измеряет отскок падающего молотка от испытательной поверхности, и число твердости выражается как высота отскока в терминах максимального отскока от полностью закаленной высокоуглеродистой стали.

Природа твердости и мягкости. - Сопротивление металла проникновению другим телом, очевидно, частично зависит от силы сопротивления его межатомных связей. На это указывает почти точная параллель порядка твердости металлов и их модулей упругости. Единственное известное исключение - это соотношение магния и алюминия. Магний поцарапает алюминий, хотя его модуль упругости и средняя прочность межатомных связей меньше.


Дата: 24.12.2015; просмотр: 1216


.

металлов: от первичной прочности к практическому использованию

Теоретически наука представляется конкретной практикой. Факты, цифры, выводы, анализы - эти процессы не оставляют места для творческой интерпретации. Однако есть некоторые предметы, по которым наука может стать скорее предположением, чем фактом. Возьмем, к примеру, металлы. Вы бы подумали, что если бы кто-то спросил, какой металл самый сильный, можно было бы легко ответить или даже составить рейтинг в стиле НБА от самого сильного к самому слабому. Но, как и в НБА или НФЛ, идея «лучшего» спорна, потому что есть разные способы измерения «качества».

Чтобы даже начать говорить о самом прочном металле, вы должны сначала понять четыре различных типа прочности.

Сильные стороны

Один из типов прочности называется Предел текучести , который измеряет, насколько хорошо материал сопротивляется изгибу или деформации. Это особенно важный фактор для инженеров-строителей, которые в идеале захотят строить из материала, который не сгибается при добавлении большего веса. Вы же не хотите, чтобы ваше здание выглядело как Пизанская башня.

Следующий тип прочности - Прочность на растяжение , который измеряет, сколько прочности потребуется для разрыва металла. В то время как такое вещество, как тесто для печенья, например, имеет низкую прочность на разрыв, что-то вроде графена имеет один из самых высоких значений прочности на разрыв из когда-либо зарегистрированных.

Есть также Прочность на сжатие , то есть насколько хорошо материал выдерживает сжатие или сжатие. Пенополистирол, например, имеет очень низкую прочность на сжатие и легко разламывается при сжатии или сплющивании.Прочность на сжатие можно измерить с помощью шкалы Мооса, которая измеряет относительную твердость и устойчивость к царапинам.

И, наконец, Impact Strength , который измеряет способность материала противостоять внезапной силе или удару без разрушения. Хотя пуленепробиваемые материалы не входят в первую десятку в каждой категории, они будут иметь высокий уровень ударной вязкости. С другой стороны, хотя алмаз может получить 10 баллов по шкале Мооса, он разобьется от удара молотком.

Хотя было бы действительно удобно, если бы металл попал в идеальную десятку во всех четырех категориях, к сожалению, его нет.Поэтому при выборе металла вы должны принять решение, исходя из вашего конкретного проекта, и определить, какой тип прочности наиболее необходим.

Ученые, однако, нашли способ немного обмануть систему, создав сплавы (или комбинации металлов), которые производят еще более прочный металл. Этот процесс может немного походить на фильм Marvel, но он помог создать чрезвычайно полезные строительные материалы.

Сталь

Одним из металлов, который делает резку, является сталь, которая представляет собой сплав железа и углерода (часто в сочетании с другими элементами).Он создается путем нагрева железной руды в печах, где удаляются примеси и добавляется углерод.

По данным Metal Supermarkets, сталь является одним из самых распространенных материалов в современном обществе, ежегодно производится более 1,3 миллиарда тонн. Большинство больших зданий, таких как небоскребы, аэропорты и мосты, в той или иной степени поддерживаются сталью. Это основной источник для автомобильной, инфраструктурной, строительной и военной промышленности.

Существует несколько различных типов стали, каждая из которых имеет свой тип прочности. Углеродистая сталь - первая, которая сочетает в себе углерод и железо и обладает высокими показателями по всем четырем типам прочности. Он имеет высокий уровень текучести и прочности на разрыв с общим баллом 6,0 по шкале Мооса.

Следующий тип стали - Maraging Steel , которая сочетает в себе никель и такие элементы, как кобальт, титан, молибден или алюминий. Этот тип стали с более низким содержанием углерода известен своим высоким пределом текучести, составляющим от 1400 до 2400 МПа.Его часто используют в ракетных обшивках, в газовых центрифугах для обогащения урана и в лопастях для ограждений.

Другой тип - Нержавеющая сталь , сплав стали, хрома и марганца. Эта комбинация создает коррозионно-стойкий материал, который имеет высокий предел прочности на разрыв и предел текучести. Благодаря коррозионно-стойкому элементу нержавеющая сталь используется во всем: от кухонных принадлежностей и столовых приборов до медицинских инструментов и даже грузовых контейнеров и мусоровозов.

Последний тип стали - Tool Steel , которая, как ни странно, в основном используется для изготовления инструментов. Эта сталь, легированная кобальтом и вольфрамом, используется из-за ее твердости и способности сохранять острую режущую кромку. Вот почему он широко используется для изготовления топоров и дрелей.

С точки зрения практического использования углеродистая сталь и нержавеющая сталь чаще всего используются в строительной отрасли. Углеродистая сталь в основном используется для изготовления балок для несущих конструкций, мостов и плит при строительстве автомобильных дорог.Нержавеющая сталь - один из старейших известных строительных материалов: есть конструкции, построенные много веков назад, и сохранившиеся до наших дней. Многие известные здания (например, Крайслер-билдинг в Нью-Йорке) сделаны из нержавеющей стали. Этот металл часто используется в кровлях, конструкциях, перилах и балюстрадах, архитектурной облицовке и компонентах водостока.

Может показаться удивительным узнать, что сталь часто используется экологичными строителями в экологичных строительных проектах. Согласно How Stuff Works , это отчасти объясняется тем, что сталь долговечна и долговечна; он не теряет качества каждый раз при переработке.Кроме того, в стальных проектах меньше отходов, чем в деревянных, потому что вы можете сваривать небольшие «обрезки», чтобы использовать их для небольших работ.

Инконель

Другой сплав, известный своей прочностью, - это инконель. Фактически, это не просто сплав - это суперсплав , сочетающий аустенит, никель и хром. Этот металл известен своей способностью выдерживать чрезвычайно высокие температуры и суровые условия. В результате он в основном используется в лопатках газовых турбин, валах электродвигателей насосов для скважин, химических заводах и ядерных реакторах с водой под давлением.

Вольфрам

Один из встречающихся в природе металлов, включенный в список, - это вольфрам, который имеет наивысшую прочность на разрыв среди всех металлов природного происхождения. Это очень редко и обычно встречается в виде химических соединений. Из всех природных металлов вольфрам имеет самую высокую температуру плавления и самое низкое давление пара. Однако вольфрам хрупкий и имеет более низкую ударную вязкость, поэтому его часто используют в качестве сплава, а не в естественном состоянии.

Около половины всего вольфрама используется для производства твердых материалов, в первую очередь карбида вольфрама, который представляет собой сплав вольфрама и углерода.Карбид вольфрама используется для изготовления ножей, сверл, дисковых пил и токарных станков. Металлообрабатывающая, горнодобывающая, строительная и нефтяная промышленность в значительной степени полагаются на инструменты из карбида вольфрама. Высокая температура плавления вольфрама делает его идеальным для производства ракет и ракет.

Титан

Также встречающийся в природе, титан имеет самое высокое отношение прочности на разрыв к плотности среди всех металлов. Хотя он очень устойчив к коррозии, он имеет более низкие баллы по шкале твердости Мооса, поэтому его часто используют в качестве сплава.Обычно он легирован различными элементами, включая железо, алюминий и ванадий. Сплавы, изготовленные с использованием титана, прочные и легкие, что делает их идеальными для автомобильной, аэрокосмической, военной и промышленной отраслей. Две трети производимого титана используется для изготовления деталей самолетов, и, поскольку титан также устойчив к коррозии в морской воде, его можно использовать для гребных валов и такелажа.

Хотя обычно они не входят в число самых прочных металлов, есть несколько других, которые довольно часто используются из-за их значительной прочности и дополнительных преимуществ в строительной отрасли.

Алюминий

Хотя сам алюминий не часто входит в список самых прочных металлов, он часто используется в качестве сплава для повышения прочности металла. Некоторые общие элементы, с которыми сочетается алюминий, - это кремний, магний и медь. Алюминиево-цинковые сплавы являются одними из самых прочных сплавов, доступных сегодня, и часто используются в автомобильной и авиакосмической промышленности.

Алюминий также можно сделать более прочным путем обработки - горячей или холодной прокатки - термической обработки с последующим быстрым охлаждением.Этот процесс замораживает атомы на месте, укрепляя металл. Другой процесс - это «холодная обработка» или прокатка, растяжение, ковка или волочение для повышения прочности металла. Это тормозит движение атомов друг относительно друга.

Алюминий привлекает внимание тем, что он примерно на треть легче стали, а это означает, что детали можно делать толще и прочнее, при этом уменьшая вес автомобиля. Это второй по популярности материал среди автопроизводителей по данным Ассоциации алюминия. Он также часто используется в оконных рамах, уличных фонарях, дверях, самолетах, поездах, автобусах, грузовиках и океанских лайнерах.Металл также используется Армией США, НАСА и ВВС США.

Медь

Как самый старый из известных металлов, используемый человеком - начиная с древнего Египта - медь имеет много преимуществ. Он имеет более низкую прочность на разрыв, чрезвычайно устойчив к коррозии и является сверхпроводником электричества. Медь часто используется для охлаждения, кондиционирования воздуха, посуды, компьютеров, лекарств и трубопроводов.

Есть два типа медных трубок. Жесткие медные трубы идеально подходят для труб с горячей и холодной водой в зданиях.С другой стороны, мягкая медь часто используется для изготовления трубопроводов хладагента в системах отопления, вентиляции и кондиционирования воздуха и тепловых насосах. Пластичная медь - ковкий металл, устойчивый к коррозии, вызванной водой и почвой, а также пригоден для вторичной переработки. Медные трубки также легко спаиваются, образуя прочные связи.

Этот металл также легирован латунью и используется в музыкальных инструментах, ювелирных изделиях, строительстве и произведениях искусства.

Железо
Любители комиксов могут автоматически подумать о Железном человеке, но забавный факт: костюм Железного человека на самом деле сделан не из железа.По слухам, он, скорее всего, сделан из сплава никеля и титана.

Есть два разных типа железа: литое и кованое. По сути, чугун прокатывается, разливается и формуется, а кованое железо прокатывается только на заключительных стадиях производства. Чугун используется в архитектурных проектах (например, купол Капитолия США), в то время как ковка используется для таких вещей, как балки, фермы и балки.

От строительства Эмпайр-стейт-билдинг до ремонта вашего дома - знание металлов имеет решающее значение.Даже если вы не строитель, эти знания могут позволить вам по-новому взглянуть на здания в вашем родном городе.

.

Изменение свойств - механизмы упрочнения / упрочнения

Механизмы упрочнения / упрочнения

Как обсуждалось в предыдущем разделе, способность кристаллического материала пластически деформироваться во многом зависит от способности дислокации перемещаться внутри материала. Следовательно, препятствие движению дислокаций приведет к упрочнению материала. Существует несколько способов препятствовать перемещению вывиха, в том числе:

  • контроль размера зерна (снижение сплошности атомных плоскостей)
  • деформационное упрочнение (образование и запутывание дислокаций)
  • легирование (введение точечных дефектов и большего количества зерен в точечную дислокацию)

Контроль размера зерен
Размер зерен в материале также влияет на прочность материала.Граница между зернами действует как барьер для движения дислокаций и возникающего в результате скольжения, поскольку соседние зерна имеют разную ориентацию. Поскольку выстраивание атомов различное и плоскости скольжения между зернами прерывистые. Чем меньше зерна, тем меньше расстояние, на которое атомы могут перемещаться по определенной плоскости скольжения. Следовательно, более мелкие зерна улучшают прочность материала. Размер и количество зерен в материале контролируется скоростью затвердевания из жидкой фазы.

Деформационное упрочнение
Деформационное упрочнение (также называемое наклепом или холодной деформацией) - это процесс повышения твердости и прочности металла за счет пластической деформации. Когда металл пластически деформируется, дислокации перемещаются и возникают дополнительные дислокации. Чем больше дислокаций в материале, тем больше они будут взаимодействовать и запутываться. Это приведет к снижению подвижности дислокаций и упрочнению материала. Этот вид упрочнения обычно называют холодной деформацией.Это называется холодной обработкой, потому что пластическая деформация должна происходить при достаточно низкой температуре, чтобы атомы не могли перегруппироваться. Когда металл обрабатывается при более высоких температурах (горячая обработка), дислокации могут перестраиваться, и упрочнение незначительное.

Деформационное упрочнение легко продемонстрировать с помощью куска проволоки или скрепки. Прямой участок согните несколько раз вперед-назад. Обратите внимание, что металл сложнее согнуть в одном и том же месте. В зоне деформационного упрочнения образовались дислокации, которые запутались, увеличивая прочность материала.Продолжение изгиба в конечном итоге приведет к разрыву проволоки в месте изгиба из-за усталостного растрескивания. (После большого количества циклов изгиба дислокации образуют структуры, называемые стойкими полосами скольжения (PSB). PSB - это в основном крошечные области, где дислокации накапливаются и перемещают поверхность материала, оставляя ступеньки на поверхности, которые действуют как концентраторы напряжения или инициируют трещины. баллов.)

Однако следует понимать, что повышение прочности путем холодной обработки также приводит к снижению пластичности.График справа показывает предел текучести и относительное удлинение в зависимости от процента холодной обработки для нескольких примеров материалов. Обратите внимание, что для каждого материала небольшая холодная обработка приводит к значительному снижению пластичности.

Влияние повышенной температуры на деформационно упрочненные материалы
Когда деформационно упрочненные материалы подвергаются воздействию повышенных температур, упрочнение, возникшее в результате пластической деформации, может быть потеряно.Это может быть плохо, если требуется усиление, чтобы выдержать нагрузку. Однако упрочнение из-за деформационного упрочнения не всегда желательно, особенно если материал сильно деформируется, так как пластичность будет снижена.

Термическая обработка может использоваться для устранения эффектов деформационного упрочнения. Во время термообработки могут произойти три вещи:

  1. Восстановление
  2. Рекристаллизация
  3. Рост зерна

Восстановление
Когда материал, отвержденный пятнами, выдерживается при повышенной температуре, происходит усиление диффузии атомов, что снижает часть энергии внутренней деформации.Помните, что атомы не фиксированы в своем положении, но могут перемещаться, когда у них достаточно энергии, чтобы разорвать свои связи. Диффузия быстро увеличивается с повышением температуры, и это позволяет атомам в сильно напряженных областях перемещаться в ненапряженные положения. Другими словами, атомы свободнее перемещаться и возвращаться в нормальное положение в структуре решетки. Это называется фазой восстановления и приводит к корректировке деформации в микроскопическом масштабе. Внутренние остаточные напряжения снижаются за счет уменьшения плотности дислокаций и перемещения дислокации в позиции с более низкой энергией.Спутки дислокаций конденсируются в резкие двумерные границы, и плотность дислокаций в этих областях уменьшается. Эти области называются субзернами. Заметного снижения прочности и твердости материала не происходит, но коррозионная стойкость часто повышается.

Рекристаллизация
При более высокой температуре новые, свободные от деформации зерна зарождаются и растут внутри старых искаженных зерен и на границах зерен. Эти новые зерна растут, чтобы заменить деформированные зерна, образовавшиеся в результате деформационного упрочнения.При рекристаллизации механические свойства возвращаются к исходному, более слабому и более пластичному состоянию. Рекристаллизация зависит от температуры, количества времени при этой температуре, а также от степени деформационного упрочнения материала. Чем больше деформационное упрочнение, тем ниже будет температура, при которой происходит рекристаллизация. Кроме того, для любой рекристаллизации необходимо минимальное количество (обычно 2-20%) холодной обработки. Размер новых зерен также частично зависит от степени деформационного упрочнения.Чем больше затвердевание пятен, тем больше зародышей у новых зерен, и в результате размер зерна будет меньше (по крайней мере, на начальном этапе).

Рост зерен
Если образец оставить при высокой температуре сверх времени, необходимого для полной рекристаллизации, зерна начинают увеличиваться в размерах. Это происходит потому, что диффузия происходит через границы зерен, и более крупные зерна имеют меньшую площадь поверхности границы зерен на единицу объема. Следовательно, более крупные зерна теряют меньше атомов и растут за счет более мелких.Крупные зерна уменьшают прочность и ударную вязкость материала.

.

Смотрите также