Как особенности строения металлов сказываются на их физических свойствах


4 Как особенности строения металлов — простых веществ сказываются на их физических свойствах?

№4. Физические свойства металлов определяются наличием свободных подвижных электронов в их кристаллических решетках.

Подробнее см. стр. 39-43.

Пластичность — важнейшее свойство металлов — выражается в их способности деформироваться под действием механической нагрузки. Это важнейшее свойство металлов лежит в основе их обработки давлением (ковки, прокатки и др.), вытягивании из металлов проволоки под действием силы.

Высокая электропроводность металлов обусловлена наличием в них совокупности подвижных электронов, которые под действием электрического поля приобретают направленное движение. Лучшими проводниками электрического тока являются серебро и медь.

Теплопроводность металлов также объясняется высокой подвижностью электронов, которые, сталкиваясь с колеблющимися в узлах решетки атом-ионами металлов, обмениваются с ними энергией. С повышением температуры эти колебания ионов с помощью электронов передаются другим ионам, и температура металла быстро выравнивается.

Гладкая поверхность металла или металлического изделия имеет металлический блеск, который является результатом отражения световых лучей. Высокой световой отражательной способностью обладают ртуть.

9.2: Металлы и неметаллы и их ионы

За исключением водорода, все элементы, которые образуют положительные ионы, теряя электроны во время химических реакций, называются металлами. Таким образом, металлы являются электроположительными элементами с относительно низкими энергиями ионизации. Они характеризуются ярким блеском, твердостью, способностью резонировать со звуком и отлично проводят тепло и электричество. В нормальных условиях металлы являются твердыми телами, за исключением ртути.

Физические свойства металлов

Металлы блестящие, пластичные, пластичные, хорошо проводят тепло и электричество.Другие свойства включают:

  • Состояние : Металлы представляют собой твердые вещества при комнатной температуре, за исключением ртути, которая находится в жидком состоянии при комнатной температуре (в жаркие дни галлий находится в жидком состоянии).
  • Блеск : Металлы обладают свойством отражать свет от своей поверхности и могут быть отполированы, например, золотом, серебром и медью.
  • Ковкость: Металлы обладают способностью противостоять ударам молотком и могут быть превращены в тонкие листы, известные как фольга.Например, кусок золота размером с кубик сахара можно растолочь в тонкий лист, которым будет покрыто футбольное поле.
  • Пластичность: Металлы можно втягивать в проволоку. Например, из 100 г серебра можно натянуть тонкую проволоку длиной около 200 метров.
  • Твердость: Все металлы твердые, кроме натрия и калия, которые мягкие и поддаются резке ножом.
  • Валентность: Металлы обычно имеют от 1 до 3 электронов на внешней оболочке их атомов.
  • Проводимость : Металлы являются хорошими проводниками, потому что у них есть свободные электроны. Серебро и медь - два лучших проводника тепла и электричества. Свинец - самый плохой проводник тепла. Висмут, ртуть и железо также являются плохими проводниками
  • Плотность : Металлы имеют высокую плотность и очень тяжелые. Иридий и осмий имеют самую высокую плотность, а литий - самую низкую.
  • Точки плавления и кипения : Металлы имеют высокие температуры плавления и кипения.Вольфрам имеет самые высокие температуры плавления и кипения, а ртуть - самые низкие. Натрий и калий также имеют низкие температуры плавления.

Химические свойства металлов

Металлы - это электроположительные элементы, которые обычно образуют основных или амфотерных оксидов с кислородом. Другие химические свойства включают:

  • Электроположительный характер : Металлы имеют тенденцию к низкой энергии ионизации, а обычно теряют электроны (т.е.е. окисляются ) когда они вступают в химические реакции реакции Обычно они не принимают электроны. Например:
    • Щелочные металлы всегда 1 + (теряют электрон в s подоболочке)
    • Щелочноземельные металлы всегда 2 + (теряют оба электрона в s подоболочке)
    • Ионы переходных металлов не следуют очевидной схеме, 2 + является обычным (теряют оба электрона в подоболочке s ), а также наблюдаются 1 + и 3 +

\ [\ ce {Na ^ 0 \ rightarrow Na ^ + + e ^ {-}} \ label {1.{-}} \ label {1.3} \ nonumber \]

Соединения металлов с неметаллами имеют тенденцию быть ионными по природе. Большинство оксидов металлов являются основными оксидами и растворяются в воде с образованием гидроксидов металлов :

\ [\ ce {Na2O (s) + h3O (l) \ rightarrow 2NaOH (aq)} \ label {1.4} \ nonumber \]

\ [\ ce {CaO (s) + h3O (l) \ rightarrow Ca (OH) 2 (aq)} \ label {1.5} \ nonumber \]

Оксиды металлов проявляют свою химическую природу основную , реагируя с кислотами с образованием солей металла и воды:

\ [\ ce {MgO (s) + HCl (водный) \ rightarrow MgCl2 (водный) + h3O (l)} \ label {1.{2 -} \), следовательно, \ (Al_2O_3 \).

Пример \ (\ PageIndex {2} \)

Вы ожидаете, что он будет твердым, жидким или газообразным при комнатной температуре?

Решения

Оксиды металлов обычно твердые при комнатной температуре

Пример \ (\ PageIndex {3} \)

Напишите вычисленное химическое уравнение реакции оксида алюминия с азотной кислотой:

Решение

Оксид металла + кислота -> соль + вода

\ [\ ce {Al2O3 (s) + 6HNO3 (водный) \ rightarrow 2Al (NO3) 3 (водный) + 3h3O (l)} \ nonumber \]

.

МЕХАНИЧЕСКИЕ СВОЙСТВА МЕТАЛЛОВ И СПЛАВОВ

Механические свойства имеют первостепенное значение в более крупных промышленных применениях металлов, поэтому они требуют большого внимания при их изучении.

Прочность. - Прочность материала - это свойство сопротивления внешним нагрузкам или напряжениям без повреждения конструкции. Термин «предел прочности » относится к удельному напряжению (фунты на квадратный дюйм), развиваемому в материале в результате максимальной медленно прикладываемой нагрузки, которой материал может выдержать без разрушения при испытании на растяжение.Испытание на растяжение наиболее часто применяется к металлам, потому что оно говорит об их свойствах гораздо больше, чем любое другое отдельное испытание. В металлургии о разрушении часто говорят как об отказе, разрыве или разрушении; перелом металла - это название, данное поверхности, на которой произошел перелом.

Прочность металлов и сплавов зависит от двух факторов, а именно, прочности кристаллов, из которых они состоят, и прочности сцепления между этими кристаллами.Самое сильное известное вещество - это вольфрамовая проволока электрических ламп накаливания. Чистое железо непрочно, но когда сталь легирована углеродом для получения стали, она может быть прочнее любого из чистых металлов, кроме вольфрама.

Напряжение и деформация. - Напряжение - это сила внутри тела, которая сопротивляется деформации из-за приложенной извне нагрузки. Если эта нагрузка действует на поверхность с единичной площадью, она называется единичной силой, а сопротивление ей - единиц. Таким образом, количественно напряжение - это сила на единицу площади; на европейском континенте он выражается в килограммах на квадратный миллиметр, в Соединенных Штатах - фунтах на квадратный дюйм, а в Англии обычно используются длинные тонны на квадратный дюйм.

Когда внешняя сила действует на эластичный материал, материал деформируется, и деформация пропорциональна нагрузке. Это искажение или деформация составляет деформаций, и единичная деформация измеряется в Соединенных Штатах и ​​в Англии в дюймах на дюйм, тогда как в Европе она измеряется в сантиметрах на сантиметр. Единичная деформация - это отношение расстояний или длин.

Эластичность. - Любой материал, подверженный внешней нагрузке, деформирован или деформирован.Упруго напряженные материалы возвращаются к своим первоначальным размерам при снятии нагрузки, если она не слишком велика. Такое искажение или деформация пропорциональна величине нагрузки до определенной точки, но когда нагрузка слишком велика, материал постоянно деформируется, а при дальнейшем увеличении нагрузки до определенной точки материал разрушается. Свойство восстановления исходных размеров после снятия внешней нагрузки известно как эластичность .

Модуль упругости. - В пределах эластичности отношение напряжения к деформации известно как модуль упругости (т.е. мера упругости).

Модуль упругости выражает жесткость материала. Для стали и большинства металлов это постоянное свойство, на которое мало влияет термическая обработка, горячая или холодная обработка или фактический предел прочности металла. Их модули упругости показывают, что, когда стержни из стали и алюминия одинакового размера подвергаются одинаковой нагрузке, возникающая в результате упругая деформация в алюминии будет почти в три раза больше, чем в стальном стержне.



Пропорциональный предел упругости. - Металлы обычно не эластичны во всем диапазоне нагрузок. Предел пропорциональности напряжения к деформации известен как предел пропорциональности . Предел упругости - это максимальное удельное напряжение, которое испытываемый образец будет выдерживать и все еще возвращаться к своим исходным размерам после снятия нагрузки. Предел пропорциональности и предел упругости в металлах очень близки друг к другу, настолько, что их часто путают, и теперь их принято объединять в один термин «Предел пропорциональности». Это важное свойство, напряжение, которое нельзя превышать при проектировании.

Природа эластичности. - Эластичность металлического вещества является функцией сопротивления его атомов разделению, сжатию или вращению друг относительно друга и, таким образом, является фундаментальным свойством материала. Итак, эластичность демонстрируется как функция атомных сил. Это объясняет, почему модуль упругости прочной и хрупкой термически обработанной легированной стали точно такой же, как у сравнительно слабой и вязкой отожженной стали.

Предел текучести. - Это точка на кривой "напряжение-деформация", в которой напряжение выравнивается или фактически уменьшается при продолжении деформации. Этот термин строго применим только к малоуглеродистым сталям, так как характеристика, которая его определяет, не встречается в других металлах, легированных сталях или даже холоднодеформированных или нормализованных низкоуглеродистых сталях.

Максимальная сила. - Наибольшая нагрузка, которую выдерживает образец, деленная на первоначальную площадь поперечного сечения, называется пределом прочности на разрыв или пределом прочности детали.

Пластичность. - Пластичность - это способность металла постоянно деформироваться при растяжении без разрушения. В частности, этот термин обозначает емкость, которую нужно тянуть от проволоки большего диаметра к меньшему. Такая операция, очевидно, включает в себя как удлинение, так и уменьшение площади, и значения этих двух характеристик металла, определенные при испытании на растяжение, обычно принимаются в качестве меры пластичности металла.

Прочность. - Вязкость определяется как свойство поглощения значительной энергии до разрушения. Это мера общей способности материала поглощать энергию, включая энергию как упругой, так и пластической деформации при постепенно прикладываемой нагрузке. Одним из наиболее распространенных тестов на ударную вязкость является «испытание на удар», в котором измеряется энергия, поглощенная при разрушении образца внезапным ударом.

Природа прочности. - Прочность металла определяется степенью скольжения, которая может происходить внутри кристаллов, не приводя к разрушению металла.Возможно, это результат попеременного проскальзывания и расклинивания каждой клиновидной кристаллографической плоскости, удерживаемой до приложения большего напряжения. Хрупкий металл или сплав либо не перестанет скользить после достижения упругой деформации, либо остановится только на короткое время перед разрушением. Очевидно, что последовательная остановка и проскальзывание вызовут деформацию; поэтому вязкие металлы и сплавы часто являются наиболее пластичными и пластичными.

Иногда кристаллы металла могут быть прочными, но границы кристаллов могут содержать примеси, так что наименьшая деформация кристаллической массы может вызвать растрескивание через хрупкий материал границ зерен.Это верно для стали, содержащей значительное количество фосфора, и для меди, содержащей висмут.

Ковкость. - Ковкость - это свойство металла, которое допускает остаточную деформацию при сжатии без разрушения. В частности, это означает способность раскатывать или забивать тонкие листы. Свойство пластичности похоже, но не то же самое, что и пластичность, и разные металлы не обладают этими двумя свойствами в одинаковой степени: хотя свинец и олово относительно высоки в порядке пластичности, им не хватает необходимой прочности на разрыв. быть втянутым в тонкую проволоку.Большинство металлов обладают повышенной ковкостью и пластичностью при более высоких температурах. Например, железо и никель очень пластичны при ярко-красном огне (1000 ° C).

Хрупкость. - Хрупкость подразумевает внезапный отказ. Это свойство ломаться без предупреждения, то есть без видимой остаточной деформации. Это противоположность ударной вязкости в том смысле, что хрупкое тело имеет небольшое сопротивление разрыву после достижения предела упругости. Хрупкость противоположна пластичности в том смысле, что она предполагает разрыв без значительной деформации.Часто твердые металлы хрупкие, но эти термины не следует путать или использовать как синонимы.

Усталостный отказ. - Если металл подвергается частым повторяющимся нагрузкам, он в конечном итоге разорвется и выйдет из строя.

Чередование стресса приведет к неудаче быстрее, чем повторение стресса. Под «чередованием напряжений» подразумевается попеременное растяжение и сжатие в любом волокне. Разрушение металлов и сплавов при повторяющихся или переменных напряжениях, слишком малых, чтобы вызвать даже остаточную деформацию при статическом применении, называется усталостным разрушением .

Коррозионная усталость. - Если элемент подвергается также воздействию коррозионных агентов, таких как влажная атмосфера или масло, не очищенное от кислоты, напряжение, необходимое для выхода из строя, намного ниже. Самые прочные стали не выдерживают усталости и коррозии при удельном напряжении волокна не более 24000 фунтов на квадратный дюйм, даже если их предел прочности может указывать на то, что они могут выдерживать гораздо более высокое напряжение. Интересно отметить, что удельное напряжение чрезвычайно прочной термически обработанной легированной стали, подверженной коррозионной усталости, будет не больше, чем у относительно слабой конструкционной стали.Очевидна важность защиты поверхностей усталостных элементов от коррозии с помощью цинкования, гальванизации и т. Д., Если и когда это возможно.

Твердость. - Качество твердости является сложным, и подробное исследование показало, что оно представляет собой комбинацию ряда физических и механических свойств. Его чаще определяют в терминах метода, используемого для его измерения, и обычно означает сопротивление вещества вдавливанию. Твердость также может быть определена с точки зрения устойчивости к царапинам и, таким образом, связана с износостойкостью.Термин твердость иногда используется для обозначения жесткости или состояния деформируемых изделий, поскольку твердость металла при вдавливании тесно связана с его пределом прочности при растяжении.

В инженерной практике сопротивление металла проникновению твердого инструмента для вдавливания обычно принимается как определяющее свойство твердости. Был разработан ряд стандартизированных испытательных машин и пенетраторов, наиболее распространенными из которых являются машины Бринелля, Роквелла и Виккерса.

При испытании Бринелля шарик из закаленной стали диаметром 10 мм вдавливается в поверхность испытуемого материала под нагрузкой 500 или 3000 кг и измеряется площадь вдавливания.Затем твердость по Бринеллю выражается как отношение приложенной нагрузки к площади слепка.

В тестах Rockwell используется ряд различных масштабов тестирования с использованием различных пенетраторов и нагрузок. Чаще всего используются шкалы «C», в которых используется алмазный конусный пенетратор при основной нагрузке 150 кг, и шкала «B», в которой используется закаленный стальной шар диаметром 1/16 дюйма при основной нагрузке 100 кг. кг. В этом испытании в качестве меры твердости принимается разница глубины проникновения между глубиной проникновения малой нагрузки в 10 кг и приложенной основной нагрузкой.

В тесте Виккерса используется квадратный индентор в виде ромбовидной пирамиды, который может быть нагружен от 1 до 120 кг. Как и в тесте Бринелля, твердость выражается как приложенная нагрузка, деленная на площадь поверхности пирамидального отпечатка.

Тест Бринелля обычно используется только для довольно толстых срезов, таких как прутки и поковки, в то время как тест Роквелла обычно используется как для толстых, так и для тонких срезов, таких как полосы и трубки. Поверхностный Роквелл можно использовать для деталей толщиной до 0.010 дюймов. Тестер Виккерса чаще всего используется как лабораторный прибор для очень точных измерений твердости, а не как инструмент производственного контроля.

Склероскоп Шора измеряет упругость, а не твердость, хотя они взаимосвязаны. Склероскоп измеряет отскок падающего молотка от испытательной поверхности, и число твердости выражается как высота отскока в терминах максимального отскока от полностью закаленной высокоуглеродистой стали.

Природа твердости и мягкости. - Сопротивление металла проникновению другим телом, очевидно, частично зависит от силы сопротивления его межатомных связей. На это указывает почти точная параллель порядка твердости металлов и их модулей упругости. Единственное известное исключение - это соотношение магния и алюминия. Магний поцарапает алюминий, хотя его модуль упругости и средняя прочность межатомных связей меньше.


Дата: 24.12.2015; просмотр: 1205


.

Механические свойства

Механические свойства

Механические свойства материала - это те свойства, которые связаны с реакцией на приложенную нагрузку. Механические свойства металлов определяют диапазон полезности материала и определяют ожидаемый срок службы. Механические свойства также используются для классификации и идентификации материала. Наиболее распространенными рассматриваемыми свойствами являются прочность, пластичность, твердость, ударопрочность и вязкость разрушения.

Большинство конструкционных материалов являются анизотропными, что означает, что свойства их материалов зависят от ориентации. Различия в свойствах могут быть обусловлены направленностью микроструктуры (текстуры) в результате операций формования или холодной обработки, контролируемым выравниванием армирования волокном и множеством других причин. Механические свойства обычно зависят от формы продукта, такого как лист, плита, экструзия, литье, ковка и т. Д. Кроме того, обычно можно увидеть механические свойства, перечисленные в виде направленной зернистой структуры материала.В таких продуктах, как лист и пластина, направление прокатки называется продольным направлением, ширина продукта называется поперечным направлением, а толщина называется коротким поперечным направлением. Ориентация зерен в металлических изделиях стандартной формы показана на изображении.

Механические свойства материала не являются постоянными и часто изменяются в зависимости от температуры, скорости нагрузки и других условий. Например, температуры ниже комнатной обычно вызывают повышение прочностных свойств металлических сплавов; в то время как пластичность, вязкость разрушения и удлинение обычно снижаются.Температуры выше комнатной обычно вызывают снижение прочностных свойств металлических сплавов. Пластичность может увеличиваться или уменьшаться с повышением температуры в зависимости от одних и тех же переменных.

Следует также отметить, что часто наблюдается значительная вариабельность значений, полученных при измерении механических свойств. На первый взгляд идентичный образец для испытаний из одной партии материала часто дает существенно разные результаты. Поэтому для определения механических свойств обычно проводят несколько испытаний, и сообщаемые значения могут быть средним значением или вычисленным минимальным статистическим значением.Кроме того, иногда указывается диапазон значений, чтобы показать изменчивость.

.

Наноструктуры из благородных металлов Влияние структуры и окружающей среды на их оптические свойства

  • Журналы
  • Публикуйте вместе с нами
  • Партнерские отношения с издателями
  • О нас
  • Блог

Журнал наноматериалов

+ Обзор журнала For для авторов Обзор журнала

For редакторы Содержание

Специальные выпуски

SubmitJournal of Nanomaterials / 2013 / ArticleArticle Sections

На этой странице

.

Смотрите также