Как определить марку металла в домашних условиях


Как определить металл или его марку

Как часто вы сталкивались с такой проблемой: нужна сварка, но вы не знаете какой металл перед вами и, соответственно, трудно определиться с маркой электрода, или присадочного прутка? Возможно, необходимость отличить металл возникала у вас и по другому поводу.

Каким образом можно узнать, какой металл перед вами, какова его марка не прибегая к специальным исследованиям, таким как спектральный анализ, или анализ на углерод и т.д.?

Отличить цветной металл от черного не составит труда даже человеку не посвященному в тонкости металлургической науки. Самый простой способ, к которому можно прибегнуть, это визуальный осмотр.

Черный металл при резке, или зачистке имеет серебристо- светлый цвет, однако, очень быстро окисляется на воздухе Окисел имеет тусклый серый оттенок. Металл хорошо берется магнитом и сильно корродирует, то есть покрывается слоем рыжей ржачины.

Алюминий и сплавы на его основе — при свежем резе светлый блестящий металл, магнитом не берется, окисляясь приобретает матовость. Чистый алюминий — белесого цвета, окисленная поверхность визуально воспринимается как белый налет.

Медь  имеет красный оттенок, сильно темнеет на воздухе с образованием зеленого налета. Магнитом не берется. При сгорании окрашивает пламя в зеленый.

Бронза — это сплав с медью — имеет желтый оттенок, окисляется слабо и не магнитится.

Латунь — это сплав меди с цинком, практически тоже самое, что и бронза, только окисляется сильнее.

Коррозионностойкая сталь ( нержавейка) без цвета, иногда с сероватым оттенком, магнитом может браться нагартованная нерж, отожженная нержавейка не магнитится.

Магний — металл с белым серебристым оттенком, не магнитится. Сгорает ярким белым пламенем, при вдыхании появляется сладковатый привкус.

Различные химические элементы, высеченные абразивным, или иным кругом, на воздухе сгорают каждый своим неповторимым способом. При порезке, или заточке можно определить металл более точно по цвету и форме искры и количеству «звезд».

Известно, что низкоуглеродистые стали в зависимости от типа добавленного в плавку раскислителя различают на: кипящие, спокойные, полуспокойные.

Кипящая сталь оставляет немногочисленные длинные искры, окрашенные в оранжевый цвет. При содержании большого количества углерода (высокоуглеродистые) из-под круга вылетает пучок многочисленных светлых искр, с «звездами» на конце. С увеличением процентного содержания углерода увеличивается яркость и «звезд» становится больше.

Инструментальная сталь (быстрорез) дает пучок ломаных коротких искр.

При наличии опыта можно научиться определять количество углерода с точностью до десятой доли процента. Однако, практически невозможно отличить сталь высококачественную от обычной, так как процент содержания вредных примесей, таких как сера и фосфор, как в одном, так и в другом случае очень мал и он никак не влияют на форму, цвет, размеры искры и т.д. Кроме того, обратите внимание на то, что ст. 20 и Ст.3, Ст.4 содержат одинаковое количество углерода и, соответственно, визуально вы не увидите никакой разницы в характере  сгорания.

Безошибочно можно определить присутствие вольфрама в стали, если его более 3-4% искра окрашивается в темный бордовый цвет и это главный признак того, что сталь не углеродистая.

Чугун (сплав железа с углеродом от 2,14%) окрашивает искру в красный, здесь не ошибешься.

При ударе титана о сталь высекается яркая белесая искра.

Нержавейка дает похожую картину, однако, яркость у искры у нее меньше и ее труднее получить.

Подтвердить марку материала могут дополнительные исследования. Если взять стальную болванку и надрезать ее на 25% ее толщины, а потом ударить по ней кувалдой, то получится излом, изучив характер которого также можно сделать выводы.

Быстрорез, или рапид (Р18, Р9 и прочие) вследствие своей высокой твердости ломается хрупко и излом имеет мелкозернистый с темным окрасом. Углеродистая сталь напротив, имеет светлый с крупным зерном излом. Сопоставив данные по виду поверхности, по которой произошло разрушение, с результатами по искрам можно с большой долей уверенности говорить о правильности определения марки материала.

Если же, несмотря на все проведенные испытания вас по прежнему одолевают сомнения, то при наличии закалочной печи, вы можете провести следующий эксперимент, основанный на разной способности сталей к закалке.

Итак, сталь с содержанием углерода до 0,25% (Ст.3-Ст.20) после нагрева до Т= 900 градусов, некоторой выдержки и последующего резкого охлаждения в воде остается такой же мягкой и пластичной, каковой была до термообработки и хорошо спиливается напильником (хорошо бы иметь в хозяйстве набор тарированных напильников с различной твердостью). Углеродистую сталь с содержанием до 1,3%С легко можно отличить от низколегированной стали после закалки на масло. Первые после такой процедуры отлично пилятся напильником, а вторые (легированные) приобретают настолько высокую твердость, что напильник по ним скользит (в частности, имеются в виду хорошо свариваемые марки 9ХС, ХВГ).
Ст.40 и Ст.50 от Ст.40Х и Ст.50Х очень трудно отличить друг от друга по искре, зато после закалки ст.40Х приобретает большую твердость и напильник по такой стали скользит и не спиливает ее, а Ст.40 остается мягкой и податливой. Напильник, как средство для определения твердости, используется в случае отсутствия других средств измерения (твердомер Роквелл, или Супер-Роквелл с алмазным индентором, или ультразвуковой твердомер, основанный на явлении ультразвукового контактного импеданса).
Следует отметить, что большинство сталей после закалки имеет обезуглероженный слой (этот слой, соответственно, имеет низкую твердость) и его необходимо снять для получения корректных данных.
Если стоит вопрос различить стали по типу изготовления, поверхность гарячекатанной стали всегда покрыта налетом окалины, а холоднотянутая имеет чистую, блестящую, ничем не загрязненную поверхность.

Итак, для определения марки материала вы можете прибегнуть к одному из предложенных вариантов:

  • визуальный осмотр,
  • высекание искры,
  • изучение излома,
  • закалка и проверка напильником.

Если исследовать образец материала всеми этими способами и сопоставить результаты, то можно говорить о стопроцентной точности определения марки материала. Также все эти варианты можно использовать как дополнительные исследования при проведении спектрального анализа.

Дополнительные сведения

Ст.12Х18Н9 (AISI 304) дает короткую искру, окрашенную в светло-желтый цвет с несколькими красными точками, возникающими время от времени. В месте прикосновения абразива и на кончиках разветвления искровой пучок имеет красно -желтый окрас.


Ст.Х12Ф1 — желтая, короткая искра, множественные «звезды», концы удлинены в линии. В месте касания абразива красно-желтый окрас. Отдельные красные точки по всему пучку.


Ст.12Х13 — светло-желтая короткая искра с ответвлениями.

Как определить степени ненасыщенности молекулы

  1. Образование
  2. Наука
  3. Химия
  4. Как определить степени ненасыщенности молекулы

Знание числа ненасыщенности

Артур Винтер

в молекуле полезно, потому что это число связано с тем, сколько кратных связей или колец присутствует в неизвестном соединении. (Этот кусочек информации становится очень полезным, когда вы хотите определить структуру неизвестного соединения.)

Степени ненасыщенности в молекуле аддитивны - молекула с одной двойной связью имеет одну степень ненасыщенности, молекула с двумя двойными связями имеет две степени ненасыщенности и так далее. Подобно тому, как образование двойной связи вызывает потерю двух атомов водорода, образование кольца также приводит к потере двух атомов водорода, поэтому каждое кольцо в молекуле также добавляет одну степень ненасыщенности. Для каждой тройной связи к молекуле добавляются две степени ненасыщенности, потому что молекула должна потерять четыре атома водорода, чтобы образовалась тройная связь.Здесь показаны некоторые примеры трехуглеродных молекул с различным числом степеней ненасыщенности.

Степени ненасыщенности трехуглеродных молекул.

Чтобы определить количество степеней ненасыщенности для любой произвольной структуры, вы суммируете все отдельные элементы ненасыщенности в молекуле. На следующем рисунке показана молекула, состоящая из одного кольца, одной двойной связи и одной тройной связи. Таким образом, эта молекула имеет четыре степени ненасыщенности, потому что двойная связь и кольцо добавляют по одной степени ненасыщенности, а тройная связь добавляет две степени, всего четыре.

Молекула с четырьмя степенями ненасыщенности.

Более важным, чем определение количества степеней ненасыщенности по молекулярной структуре, является возможность определить количество степеней ненасыщенности по молекулярной формуле. Число степеней ненасыщенности можно определить по молекулярной формуле с использованием следующего уравнения.

С помощью этого уравнения можно определить число степеней ненасыщенности для любого углеводорода, молекулярная формула которого известна.(Для соединений, структура и формула которых неизвестны, химики используют инструментальный метод, называемый масс-спектрометрией , чтобы определить молекулярную формулу соединения.)

Но как насчет молекул, которые содержат атомы, отличные от водорода и углерода? В таких случаях вам необходимо преобразовать эти многоатомные молекулярные формулы в эквивалентные формулы, содержащие только углерод и водород, чтобы их можно было вставить в предыдущее уравнение. Для этого используются следующие коэффициенты пересчета:

  • Галогены (F, Cl, Br, I): Добавьте один водород в молекулярную формулу для каждого присутствующего галогена.

  • Азот: Отнимите один водород для каждого присутствующего азота.

  • Кислород или сера: Игнорировать.

Например, чтобы определить количество степеней ненасыщенности в формуле C 8 H 6 F 3 NO 2 , вы сначала сделаете правильные замены для всех атомов, которые не являются водородом и углеродом. Фтор - это галоген, поэтому вы добавляете три атома водорода к молекулярной формуле (по одному на каждый F).Молекула содержит один азот, поэтому вы вычитаете один водород из молекулярной формулы. Два атома кислорода в молекуле, которые вы игнорируете. Это дает сокращенное уравнение C 8 H 6 + 3–1 = C 8 H 8 . Другими словами, как формула C 8 H 6 F 3 NO 2 , так и формула C 8 H 8 имеют одинаковое количество степеней ненасыщенности. Подстановка этой сокращенной формулы в предыдущее уравнение дает пять степеней ненасыщенности для молекулярной формулы C 8 H 6 F 3 NO 2 .

Об авторе книги

Артур Винтер окончил Фростбургский государственный университет, где получил степень бакалавра химии. Он получил докторскую степень в Университете Мэриленда в 2007 году. В настоящее время он является профессором химии в Университете штата Айова.

.

Как определить плотность металла - Канадский институт охраны природы (CCI) Примечания 9/10

Введение

Плотность объекта - это масса объекта, деленная на его объем. Плотность является характеристикой материала, из которого изготовлен объект, и ее значение может помочь идентифицировать материал.

За исключением объектов простой формы, напрямую определить объем сложно. Простой способ определить плотность металлического объекта - взвесить его в воздухе, а затем снова взвесить, когда он будет погружен в жидкость, как описано в разделе «Наука, лежащая в основе измерений плотности».Вода - самая удобная жидкость для использования, но если объект нельзя погрузить в воду, можно использовать органические растворители, такие как этанол или ацетон. Плотность объекта можно рассчитать по двум измерениям веса и плотности жидкости.

При правильном балансе и контейнере подходящего размера этот метод можно использовать для различных объектов: больших и малых, металлических или неметаллических. Этот метод работает для сложных форм, даже для объектов с отверстиями, пока жидкость может проникать и заполнять отверстия.После того, как плотность определена, ее можно сравнить с плотностями известных материалов, чтобы сузить круг вопросов, из которых может быть сделан объект.

В этом примечании описывается процедура и необходимые материалы для определения плотности металлического объекта. Первым шагом является выполнение процедуры на одном или нескольких металлических объектах известного состава, будь то чистый металл или сплав, чтобы получить опыт использования метода и убедиться, что он используется правильно. Затем можно определить плотность неизвестных металлов.

Методика определения плотности металла

Оборудование и материалы, необходимые для определения плотности

  • Мелкие металлические предметы, которые можно погружать в воду
  • Весы с возможностью взвешивания под весами (т. Е. Могут взвешивать предметы, подвешенные под ними) и которые могут измерять с разрешением не менее 0,01 грамма (см. Раздел Весы без возможности взвешивания под весами, чтобы узнать, как адаптировать процедуру взвешивания ниже весов. баланс)
  • Металлическая проволока для крепления к крючку внутри баланса (хорошо подойдет изогнутая скрепка)
  • Поддерживающая подставка или платформа для удержания весов, чтобы под них можно было подвешивать предметы на крючке
  • Стаканы, достаточно большие, чтобы предметы можно было полностью погрузить без перелива жидкости
  • Опоры для удержания стаканов на нужной высоте под весами
  • Водопроводная вода
  • Калькулятор
  • Нить нейлоновая (e.г. леска или аналогичный легкий материал) для подвешивания предметов под весами
  • Одноразовые нитриловые перчатки
  • Дополнительно: зажимы для крепления опоры баланса к краю счетчика

Методика определения плотности при взвешивании ниже весов

  1. Снимите крышку с нижней стороны весов, чтобы открыть крючок внутри.
  2. Поместите весы на подставку с отверстием для доступа к внутреннему крючку.
  3. Присоедините проволочный крюк к внутреннему крюку и затем тарируйте весы (установите на ноль).
  4. Подвесьте какой-либо предмет на крючок под весами, используя нейлоновую нить или аналогичный предмет, и взвесьте его в воздухе. Надевайте перчатки при работе с металлическими предметами, особенно с теми, которые предположительно содержат свинец.
  5. Наполните химический стакан водой и поместите его под весы.
  6. Поднимите стакан до полного погружения объекта. Установите подставку под стакан, чтобы удерживать его на нужной высоте.Убедитесь, что под объектом или в пустотах внутри объекта нет пузырей.
  7. Взвесьте погруженный объект.
  8. Рассчитайте плотность, используя приведенное ниже уравнение.
  9. Сравните рассчитанную плотность с известными значениями плотности металлов и сплавов, используя приведенную ниже таблицу или более полные списки, доступные в справочных материалах.
  10. Повторите шаги 4–9 с остальными объектами.

Расчет плотности

Плотность ρ объекта или материала определяется как масса m, деленная на объем V; в символах ρ = m / V.Если объект взвешивается в воздухе, чтобы определить его фактическую массу, и взвешивается в жидкости, чтобы определить его (кажущуюся) массу в жидкости, то плотность объекта определяется по формуле:

Плотность воды 0,998 г / см 3 при 20 ° C и 0,997 г / см 3 при 25 ° C.

Результаты процедуры

Примеры объектов

На рис. 1 показаны примеры восьми различных металлических образцов, использованных для демонстрации этой процедуры.

© Правительство Канады, Канадский институт охраны природы.CCI 120260-0358
Рис. 1. Металлические предметы, используемые для демонстрации процедуры.

Измеренные плотности металлических образцов на Рисунке 1 представлены ниже.

В верхнем ряду слева направо:

  1. Вероятно, чугун (7,13 г / см 3 )
  2. Алюминий высокой чистоты (2,70 г / см 3 )
  3. Красноватый медный сплав (возможно, 85% меди и 15% цинка, 8,23 г / см 3 )
  4. Медь высокой чистоты (8.88 г / см 3 )

В нижнем ряду слева направо:

  1. Цинковое литье (сплав неизвестен, 7,09 г / см 3 )
  2. Свинец высокой чистоты (11,20 г / см 3 )
  3. Олово высокой чистоты (7,27 г / см 3 )
  4. Желтый картридж, латунь (70% меди и 30% цинка, 8,45 г / см 3 )

В каждом образце плотность определялась по приведенной выше формуле. Например, для алюминиевого объекта (б) масса оказалась равной 110.18 г в воздухе и 69,45 г в воде, что дает плотность 2,70 г / см. 3 . Для чугунного объекта (а) масса составила 209,47 г в воздухе и 180,13 г в воде, что дает 7,13 г / см 3 . Для свинцового объекта (f) масса составила 102,44 г в воздухе и 93,31 г в воде, что дает 11,20 г / см 3 .

Измеренные плотности алюминия, чугуна и свинца (2,70, 7,13 и 11,20 г / см 3 ) близки к известным значениям плотности (2,71, 7,20 и 11,33 г / см 3 из таблицы 1).Таким образом, предметы из алюминия и свинца легко идентифицируются по плотности.

Для изделия из чугуна одной плотности недостаточно, чтобы исключить другие металлы, такие как цинк (известная плотность 7,13 г / см 3 ). Когда плотность неизвестного металла приближается к плотности нескольких металлов и сплавов (например, цинка, железа и олова), тогда необходимо будет определить другие свойства, такие как магнетизм и цвет, чтобы помочь идентифицировать его.

Известная плотность выбранных металлов и сплавов

Известная плотность выбранных металлов и сплавов приведена в таблице 1 в порядке увеличения плотности (ASTM 2006, Lide 1998).

Таблица 1: известная плотность выбранных металлов и сплавов
Металл или сплав Плотность (г / см 3 )
Алюминий 2,71
Алюминиевые сплавы 2,66–2,84
цинк 7,13
Чугун (серое литье) 7,20
Олово 7.30
Сталь (углеродистая) 7,86
Нержавеющая сталь 7,65–8,03
Латунь (картридж: 70% меди, 30% цинка) 8,52
Латунь (красный: 85% меди, 15% цинка) 8,75
Нейзильбер (65% меди, 18% никеля, 17% цинка) 8,75
Бронза (85% меди, 5% олова, 5% цинка, 5% свинца) 8.80
Никель 8,89
Медь 8,94
Серебро 10,49
Свинец 11,33
Золото 19,30
Реквизиты баланса

Весы с возможностью взвешивания под весами обычно поставляются с крышкой под внутренним крючком.На рис. 2 показан пример расположения крышки на дне весов.

© Правительство Канады, Канадский институт охраны природы. CCI 120260-0359
Рис. 2. Весы с возможностью взвешивания под весами.

На рис. 3 показан увеличенный вид с закрытой крышкой; на рис. 4 крышка открыта, чтобы обнажить внутренний крючок.

© Правительство Канады, Канадский институт охраны природы. CCI 120260-0360
Рис. 3. Деталь нижней стороны весов, демонстрирующая подвижную металлическую крышку, закрывающую внутренний крюк.

© Правительство Канады, Канадский институт охраны природы. CCI 120260-0361
Рис. 4. Деталь нижней стороны весов, показывающий внутренний крюк после поворота металлической крышки.

На рисунке 5 показана металлическая проволока, изогнутая в виде крючков на обоих концах. На рис. 6 показан крючок на одном конце проволоки, прикрепленный к внутреннему крючку внутри весов.

© Правительство Канады, Канадский институт охраны природы. CCI 120260-0363
Рис. 5. Проволока с загнутыми концами в виде крючка.

© Правительство Канады, Канадский институт охраны природы. CCI 120260-0362
Рис. 6. Деталь проволоки, загнутой в крючки с обоих концов. Верхний конец крючка прикреплен к другому крючку внутри весов.

На рис. 7 показаны весы, которые устанавливаются на подставку из оргстекла с прорезью в верхней части. Отверстие обеспечивает доступ к крючку на нижней стороне весов.

© Правительство Канады, Канадский институт охраны природы. CCI 120260-0365
Рисунок 7.Весы устанавливаются на подставку из оргстекла с крюком, который вот-вот пройдет через отверстие в подставке.

На рис. 8 показаны весы на подставке из оргстекла с прямоугольным купоном из чистой меди, взвешиваемым на воздухе. На рисунке 9 показаны весы на стенде из оргстекла с прямоугольным купоном из чистой меди, взвешиваемым в воде. Меньшая подставка из оргстекла используется для поддержки стакана на нужной высоте.

© Правительство Канады, Канадский институт охраны природы.CCI 120260-0366
Рис. 8. Прямоугольный купон чистой меди, взвешиваемой на воздухе.

© Правительство Канады, Канадский институт охраны природы. CCI 120260-0367
Рис. 9. Прямоугольный купон из чистой меди, погруженной в воду.

На рисунке 10 показан пример объекта с отверстием, в котором застряли пузырьки воздуха. Будьте осторожны, чтобы не захватить предметом пузырьки воздуха, так как это приведет к неточному показанию.

© Правительство Канады, Канадский институт охраны природы.CCI 120260-0375
Рис. 10. Три пузырька воздуха застряли в отверстии.

Дополнительная информация

Использование других растворителей, кроме воды

Если погружать какой-либо предмет в воду, например железо, нецелесообразно, поскольку он очень подвержен коррозии, можно использовать органический растворитель, такой как ацетон или безводный этанол. Необходимо использовать надлежащую вентиляцию и соответствующие средства индивидуальной защиты. Обратитесь к паспорту безопасности (SDS) конкретного растворителя для рекомендованного оборудования.Плотность ацетона составляет 0,790 г / см 3 , а плотность безводного этанола составляет 0,789 г / см 3 , оба при 20 ° C. Тем, кому может потребоваться использовать одну из этих жидкостей, попробуйте измерить плотность объекта, используя воду и одну из этих жидкостей, и сравните результаты.

Советы по настройке весов
Альтернативная подставка для весов

Лист фанеры с отверстием можно прижать к краю прилавка, если нет подставки для балансировки (Рисунок 11).

© Правительство Канады, Канадский институт охраны природы. CCI 120260-0296
Рис. 11. Платформа для весов, сделанная из фанеры и зажимов.

Весы без взвешивания под весами

Весы без крюка для взвешивания можно использовать для определения плотности, но для этого требуется рама, чтобы подвешивать объект под весами и переносить вес объекта на весы. Баланс должен быть установлен на платформе; может использоваться установка, аналогичная показанной на рисунке 11.(В этом случае отверстие в дереве на Рисунке 11 не требуется.) Затем вокруг весов и платформы устанавливают четырехстороннюю рамку (имеющую форму рамки для рисунка), опираясь только на чашу весов и не касаясь ее. другая часть баланса (рисунок 12). Весы тарируют с установленными рамой и крюком, затем объект прикрепляют к крюку на раме и взвешивают в воздухе и в жидкости, как в шагах 4–9 процедуры: определение плотности металла.

© Правительство Канады, Канадский институт охраны природы.CCI 120260-0298
Рис. 12. Вид спереди (левая часть рисунка) и вид сбоку (правая сторона), показывающие весы без возможности взвешивания ниже весов. Верхний сегмент прямоугольной рамки опирается на чашу весов, а предмет прикрепляется к нижнему сегменту.

Наука, лежащая в основе измерений плотности

Плавучесть и принцип Архимеда

Техника этой процедуры датируется третьим веком до нашей эры. В своей книге «Плавающие тела» Архимед Сиракузский предположил, что если объект погрузить в жидкость и взвесить, он будет легче, чем его истинный вес, на вес жидкости, которую он вытесняет.История гласит, что Архимед использовал эту идею, чтобы показать, что корона не была чистым золотом, а скорее смесью золота и серебра (Heath 1920).

Объект кажется более легким в жидкости, потому что на него действует сила, называемая выталкивающей силой. Сила возникает из-за того, что давление в жидкости увеличивается с глубиной, поэтому давление на нижнюю часть объекта (толкая объект вверх) выше, чем давление сверху (толкающее его вниз). Разница между давлением, направленным вверх и вниз, дает подъемную силу.Выталкивающая сила, толкая объект вверх, действует против силы тяжести, которая тянет объект вниз. Если подъемная сила меньше силы тяжести, объект утонет, но будет казаться, что в жидкости он весит меньше, чем в воздухе. Если выталкивающая сила больше силы тяжести, объект всплывет к поверхности жидкости.

Плотность объекта рассчитывается по формуле, приведенной ранее

Когда плотность известна, ее можно использовать для расчета объема объекта по следующей формуле:

Объем объекта = (масса в воздухе) / (плотность объекта)

Подобно воде, воздух также производит подъемную силу.(Вот почему гелиевые шары плавают вверх.) Выталкивающая сила воздуха слишком мала, чтобы иметь значение в этой процедуре, но ее необходимо учитывать, когда требуется высокая точность взвешивания (Skoog et al. 2014).

Плотность определяется по вытесненному объему

Более простой, но менее точный способ измерения плотности - поместить объект в жидкость и измерить объем вытесненной жидкости. Это можно использовать для небольших объектов, которые помещаются в градуированный цилиндр, например, чтобы решить, сделан ли объект из свинца или менее плотного металла.

Порядок действий следующий. Найдите градуированный цилиндр диаметром не намного больше, чем объект. Определите массу объекта с помощью подходящих весов. Добавьте воду в мерный цилиндр и запишите начальный объем. Полностью погрузите объект в воду, стараясь не образовывать пузырей, а затем запишите объем во второй раз. Объем объекта равен разнице конечного и начального объемов, считываемых с градуированного цилиндра, а плотность - это масса, деленная на объем объекта.

В качестве примера была измерена фигурка лося. Масса 4,088 г. На рис. 13 фигурка показана за пределами градуированного цилиндра, а на рис. 14 - в погруженном состоянии. Вода в градуированном цилиндре увеличилась с 5,0 мл до 5,6 мл, когда фигурка была погружена, что дало изменение объема на 0,6 мл. Без учета ошибок измерения объема плотность рассчитывается и составляет 4,088 г / 0,6 мл = 6,8 г / см 3 . (Примечание: 1 мл = 1 см 3 .) Это меньше плотности цинка и может предполагать сплав цинка и более легкого металла, возможно, магния или алюминия.Но с учетом небольшого объема измерения есть неточности. Объем может быть измерен только с точностью до 0,1 мл с помощью градуированного цилиндра, поэтому объем может составлять от 0,5 до 0,7 мл. Таким образом, плотность может быть где угодно от 4,088 г / 0,7 мл = 5,8 г / см 3 до 4,088 г / 0,5 мл = 8,2 г / см 3 . В этом диапазоне измерений фигурка может быть из цинка, железа, олова, стали или других сплавов, но не из чистого алюминия или чистого свинца. Фактически анализ показал, что это олово, имеющее плотность 7.30 г / см 3 .

© Правительство Канады, Канадский институт охраны природы. CCI 120260-0373
Рис. 13. Небольшой металлический предмет перед погружением в воду в мерном цилиндре на 25 мл. Обратите внимание на уровень воды.

© Правительство Канады, Канадский институт охраны природы. CCI 120260-0374
Рис. 14. Небольшой металлический предмет после погружения в воду в мерном цилиндре объемом 25 мл. Уровень воды примерно на 0,6 мл больше, чем до погружения объекта.

Другое применение

Вышеуказанные процедуры можно использовать не только для идентификации металлов по их плотности.

Вес для литья металлов

При отливке скульптуры необходимо оценить количество металла, необходимое для заполнения формы модели скульптуры. Если отливаемая модель может быть погружена в воду, объем модели можно определить с помощью описанных выше методов. Тогда необходимую массу металла m можно рассчитать из объема V модели и плотности металла ρ по формуле m = ρV.(Имейте в виду, что обычно требуется дополнительный металл для заполнения каналов, которые направляют расплавленный металл в форму.)

Благодарности

Особая благодарность Миган Уолли, Люси 'т Харт и Кэтрин Мачадо, бывшим стажерам CCI, за их помощь в разработке этой заметки.

Список литературы

ASTM G1-03. «Стандартная практика подготовки, очистки и оценки образцов для испытаний на коррозию». В Ежегодной книге стандартов ASTM, т. 03.02. Вест Коншохокен, Пенсильвания: Американское общество испытаний и материалов, 2006, стр.17–25.

Heath, T.L. Архимед. Нью-Йорк, Нью-Йорк: Макмиллан, 1920.

Lide, D.R., ed. CRC Справочник по химии и физике, 79-е изд. Бока-Ратон, Флорида: CRC Press, 1998, стр. 12-191–12-192.

Скуг, Д.А., Д.М. Уэст, Ф.Дж. Холлер и С. Присядь. Основы аналитической химии, 9 изд. Бельмонт, Калифорния: Брукс / Коул, 2014 г., стр. 22–23.

Написано Линдси Селвин

Également publié en version française.

© Правительство Канады, Канадский институт охраны природы, 2016

ISSN 1928-1455

.

Как определять оценки в Python

Переполнение стека
  1. Около
  2. Продукты
  3. Для команд
  1. Переполнение стека Общественные вопросы и ответы
  2. Переполнение стека для команд Где разработчики и технологи делятся частными знаниями с коллегами
  3. Вакансии
.

ИзучитеУчебные устройства: математические и научные симуляции

Пчела для квилтинга (Симметрия)

Наступила неделя Хэллоуина, поэтому мы решили отпраздновать это жуткими произведениями искусства, любезно предоставленными Quilting Bee Gizmo.

Эта штуковина разработана, чтобы помочь научить симметрии с творческой точки зрения. Он поставляется с 20 готовыми «лоскутными одеялами» в галерее, и вы можете создать свои собственные. Каждое квилт можно проверить на симметрию линий и вращательную симметрию.Кроме того, при создании своих собственных одеял учащиеся могут выбрать определенный тип симметрии линий, и Gizmo позаботится о том, чтобы это отражалось в их дизайне. Параметр «Выбрать цвета» позволяет учащимся выбирать из множества цветов, включая подходящие для Хэллоуина оттенки, такие как оранжевый, черный, фиолетовый и красный.

Поздравляю с Хеллоуином и удачного лоскутного шитья!

.

Смотрите также