Как называется вид покраски металла или пластмассы когда используется


Поле чудес : Как называется вид покраски металла или пластмассы, когда используется мягкий переход из одного цвета в другой? : Смотреть ответ

Приветствуем вас!
Вы попали на наш сайт, потому-что ищите ответ на задание, из знаменитой игры "ПОЛЕ ЧУДЕС".
У нас на проекте самая большая база решений к этой и многим другим анологичным викторинам.
По-этому, мы рекомендуем добавить наш проект к себе в закладки, чтобы не потерять его. Чтобы вы могли максимально быстро отыскать ответ на нужный вопрос из игры "Поле-Чудес", рекомендуем воспользоваться поиском по сайту, он располагается в верхней-правой части проекта(если же вы просматриваете наш сайт с мобильного устройства, то ищите форму поиска внизу, под коментариями). Чтобы найти требуемое задание, достаточно будет ввести всего первые 2-3 слова из требуемого вопроса.

Если же вдруг случилось невероятное и вы не нашли ответа на какой-то вопрос через поиск по базе, то очень просим вас написать об этом в комментариях.
Мы очень постараемся быстро поправить это.

красок и типов красок, используемых на судах

Краски - это основной материал, используемый на судах для защиты от коррозии. Доступны различные типы красок в зависимости от требований и места нанесения на корабле. Краски при нанесении на структуру создают барьер между структурной поверхностью и явлением, вызывающим коррозию.

Теперь, прежде чем переходить к типам красок, давайте сначала разберемся с составными частями краски

Краски состоят из следующих

  1. Связующее (Иногда связующие называют носителем, средой, смолой, пленкообразователем или полимером)
  2. Пигмент и разбавитель
  3. Растворитель

Связующее и пигмент в краске образуют сухую пленку краски.Растворители в краске помогают при нанесении краски.

Связующие

Связующие вещества определяют физические и химические характеристики лакокрасочного покрытия. Связующее может быть жидким, твердым или твердым с отвердителями.

Краски обычно называют в честь их связующего компонента. Например: эпоксидные краски, хлоркаучуковые краски, алкидные краски и т. Д.

Связующие обычно делятся на два класса

  1. Конвертируемые переплеты
  2. Связующие неконвертируемые

Кабриолет

Конверсионные связующие связаны с химической реакцией и работают в два этапа

1 этап

Растворитель теряется из пленки при испарении, и пленка становится сухой на ощупь.

2 этап

Химическая сложность пленки постепенно усложняется:

  • Реакция с кислородом воздуха
  • Реакция с добавлением химического отвердителя
  • Реакция с влагой в атмосфере.
  • Искусственное отопление
  • Солнечное отопление.
Связующие неконвертируемые

Неконвертируемые связующие не вызывают никаких химических реакций, кроме потери растворителя при испарении.

Простые растворы различных смол или полимеров растворяют в подходящем растворителе (ах).Сушка краски происходит за счет испарения растворителя без каких-либо химических изменений.

Связующие, которые находятся в этой категории:

  • Хлорированный каучук
  • Винил
  • Битумный
  • Целлюлоза

Пигменты и наполнители

Пигменты и наполнители используются в виде мелкодисперсных порошков, которые диспергированы в связующих с различными размерами частиц. Пигменты можно разделить на следующие типы:

  • Пигменты антикоррозионные
  • Барьерные пигменты
  • Пигменты красящие
  • Удлинители

Состав краски

Растворители

Растворители используются в красках в основном для облегчения их нанесения.Назначение растворителя в краске:

  • Растворите связующее и уменьшите вязкость краски до уровня, подходящего для различных способов нанесения. Например, кистью, валиком, безвоздушным распылителем и т. Д.
  • После нанесения растворитель испаряется

Типы растворителей

  1. Уайт-спирит
  2. Ксилол
  3. Бутанол
  4. Изопропилаллохол
  5. Трихлорэтилен
  6. Ацетон
  7. Метилэтилкетон (МЭК)

Ниже приведены различные типы красок, используемых на судах. Они классифицируются по связующим веществам / транспортным средствам, как объяснялось ранее.

Битум или пек

Простые растворы битума или пека доступны в сольвентной нафте или уайт-спирите. Битум или пек также можно смешивать нагреванием с другими материалами для образования носителя.

На масляной основе

Они состоят в основном из растительных олиф, таких как льняное масло и тунговое масло. Для ускорения высыхания за счет естественной реакции с кислородом используются сушилки.

Олео Смолистый

В состав олифы входят натуральные или искусственные смолы.Некоторые из этих смол могут реагировать с олифой, давая более быстрое высыхание носителя.

Алкидная смола

Эти транспортные средства обеспечивают дополнительное улучшение времени высыхания и пленкообразования олифы. Название алкид происходит от ингредиентов, содержащих спирт и кислоты. Алкид не обязательно должен быть получен из масла, поскольку можно использовать жирную кислоту или кислоту, не содержащую масла.

Химическая стойкость

Транспортные средства этого типа демонстрируют исключительно хорошую устойчивость к суровым погодным условиям

1.Эпоксидные смолы

Источником эпоксидных смол являются химические вещества, которые могут быть произведены из нефти и природного газа. Эти краски обладают хорошей адгезией, а также отличной химической стойкостью. Они также могут обладать хорошей гибкостью и прочностью. Они дороги из-за удаления нежелательных побочных продуктов, а также имеют глянцевую поверхность. Обычно они поставляются в двух упаковках, состоящих из эпоксидной смолы и отвердителя (обычно амин или полиамидная смола), которые смешиваются перед нанесением.Эпоксидные смолы не следует путать с эпоксидно-эфирными красками. Эпоксидные эфиры можно рассматривать как алкидные краски, поскольку они обычно состоят из эпоксидной смолы и жирных кислот масла.

2. Угольная смола / эпоксидная смола

Тип транспортного средства аналогичен эпоксидной смоле, за исключением того, что вместо отвердителя со смолой примешивается каменноугольный пек. Состав этого типа в некоторой степени сочетает в себе химическую стойкость эпоксидной смолы с непроницаемостью каменноугольной смолы.

3.Хлорированный каучук и изомеризованный каучук

Автомобиль в данном случае состоит из раствора пластифицированного хлорированного каучука или изомеризованного каучука. Изомеризованный каучук получают химическим путем из натурального каучука. Он имеет тот же химический состав, но другую молекулярную структуру. Оба этих производных каучука имеют широкий диапазон растворимости в органических растворителях, что позволяет использовать носитель с более высоким содержанием твердых веществ. После высыхания толщина пленки будет больше, чем у натурального каучука.Покрытия этого типа особенно устойчивы к воздействию кислот и щелочей.

4. Полиуретановые смолы

Реакция между изоцианатами и гидроксилсодержащими соединениями дает уретан, и эта реакция была принята для получения полимерных соединений, из которых могут быть получены пленка краски, волокна и клеи. Эти краски обладают хорошими свойствами, такими как прочность, твердость, блеск, стойкость к истиранию, а также химическая и атмосферостойкость. Они не применяются под водой, а только на надстройках.Они очень популярны на яхтах из-за своего глянца.

5. Виниловые смолы

Виниловые смолы получают полимеризацией органических соединений, содержащих виниловую группу. Содержание твердых веществ в этой краске невелико, поэтому она имеет очень тонкую пленку и требует больших затрат по сравнению с другими красками. Поскольку они имеют плохую адгезию к голой стали, их используют поверх грунтовки для предварительной обработки. Они являются одними из самых эффективных для защиты стали под водой.

Краски с высоким содержанием цинка

Эти краски содержат металлический цинк в качестве пигмента в количестве, достаточном для обеспечения электропроводности через сухую пленку, способную защищать сталь катодно.Содержание пигмента в сухой пленке должно быть более 90%, в качестве носителя используется эпоксидная смола, хлорированный каучук или подобная среда.

.

Изобретение и история печатного станка

Печатный станок - одно из самых важных изобретений всех времен. Его развитие разрушило бы гегемонистский контроль над информацией в Европе и навсегда изменило бы ход истории.

Быстрое, дешевое и простое распространение информации в конечном итоге привело бы к протестантской Реформации (подробнее об этом позже), Ренессансу, научному просвещению и промышленной революции.

Что делает печатный станок и почему это так важно?

Печатный станок - это любая технология, которая оказывает давление между окрашенной поверхностью и печатным носителем (например, бумагой или тканью).В этом смысле это средство переноса чернил с окрашенной поверхности и носителя.

Это было огромное улучшение по сравнению с предыдущими методологиями, такими как расшифровка вручную с использованием «пера» и чернил или многократное нанесение кистью и растирание для достижения передачи чернил.

Исторически они использовались в основном для текстов, но не исключительно, и их изобретение произвело революцию в букмекерстве и распространении по всему миру. Когда цены на книжную продукцию упали, менее богатые члены общества могли внезапно получить доступ к этому эксклюзивному и редкому предмету роскоши.

Где была изобретена печатная машина?

Когда кто-то упоминает печатный станок, большинство инстинктивно вспоминает Иоганнеса Гуттенберга и его революцию 15 век (1440 г.) технологии.

Хотя его изобретение было революционным само по себе, на самом деле это не был первый печатный станок, который был разработан. Отнюдь не.

Фактически, история печатного станка восходит к 3 веку (техника печати на дереве, но на текстиле) с его адаптацией для печати текста, широко использовавшейся во времена династии Тан в Китае ( 6-10 века г. н.э.).

Несмотря на это, Гуттенберг по праву заслуживает своего места в истории за создание машины, которая позволила впервые в истории массовое производство книг.

До его изобретения книги переписывались вручную или «печатались» с помощью деревянных блоков. И то, и другое было кропотливо медленным и трудоемким процессом, что фактически означало, что доступ к печатному слову был ограничен теми, кто мог позволить себе свои высокие ценники.

Династия Тан около 700 г. н.э. Источник: Ян Киу / Wikimedia Commons

Китайцы изобрели печатный станок?

Более 600 лет до появления печатной машины Гуттенберга китайские монахи печатали краской на бумаге, используя блочную печать.Это был очень простой процесс, в нем использовались резные деревянные блоки для нанесения чернил на листы бумаги.

Забытый на века пример текста того времени, Алмазная сутра (созданная примерно в 868 годах нашей эры, ), была обнаружена в пещере недалеко от Дуньхуана, Китай, в 1907 исследователем сэром Марком Аурелом Штайном.

Его открытие за один шаг полностью переписало то, что, как мы думали, мы знали о развитии печатного станка.

Этот текст сейчас хранится в Британской библиотеке в Лондоне и описывается как «самая ранняя из сохранившихся датированных печатных книг».

Похоже, что тот же процесс был распространен в Японии и Корее одновременно. Эти старопечатные книги были изготовлены из деревянных или металлических блоков и в основном посвящены буддийским и даосским договорам.

«Алмазная сутра». Источник: Themeplus / Flickr

Процесс был значительно улучшен в 11 веке , когда китайский крестьянин Би (Пи) Шэн разработал форму раннего подвижного шрифта. Хотя о Си (Пи) мало что известно, его гениальный метод создания сотен отдельных символов стал огромной ступенькой на пути к современной печатной машине.

Возможность быстрой и большой печати буддийских и даосских текстов была очень важна для китайцев (и соседних народов). Это, в немалой степени, способствовало распространению буддизма в регионе.

И мы могли бы не знать об этом человеке, если бы не современный ученый и ученый по имени Шэнь Куо. Он задокументировал подвижный шрифт Шэна в своей работе «Очерки пруда снов» и объяснил, что подвижный шрифт был сформирован из глины с подкладкой.

Куо также рассказывает своим читателям о типе используемых чернил (сосновая смола, воск и бумажная зола), а также объясняет, насколько это был достаточно эффективный и быстрый метод копирования документов.

Несмотря на это усовершенствование, потребовалось несколько столетий, чтобы он получил широкое распространение в Китае. Другие формы были разработаны в 14 веке Ван Чжэнь (китайский правительственный чиновник) во время династии Юань.

Система Zhen значительно улучшила систему Sheng с использованием поворотных столов, чтобы помочь наборщикам сортировать и обрабатывать резные деревянные блоки для очень эффективной печати.

Почему Гутенберг изобрел печатный станок?

Несмотря на прогресс в развитии печатного станка в Китае, он не прижился так быстро, как в Европе.Считается, что это следствие сложности азиатских систем письма по сравнению с более кратким алфавитным письмом, используемым в западных языках.

Следует отметить, что относительно примитивные формы печатного станка действительно существовали в Европе в г., конец 14 - начало 15 вв. г. Якобы они были такими же, как китайская печать на дереве, известная как ксилография, и использовались почти так же, как и методы, использованные в The Diamond Sutra .

Но один немецкий ювелир и мастер в Страсбурге собирался изменить мир. Первоначально экспериментируя с существующими ксилографическими методами, он натолкнулся на идею сделать процесс намного более эффективным (и прибыльным).

Йоханнес Гутенберг. Источник: Fondo Antiguo de la Biblioteca / Flickr

Что отличает печатную машину Гутенберга от своих предшественников, так это его интеграция механизации переноса чернил с подвижного шрифта на бумагу. Он адаптировал винтовой механизм винных, бумагоделательных и льняных прессов, чтобы разработать систему, идеально подходящую для печати.

Его устройство позволило создать раннюю форму конвейерного производства печатного текста, позволяющую массовое производство книг по гораздо более низкой цене, чем современные методы.

Что касается его намерений по разработке печатного станка, никто не знает наверняка, но зарабатывание денег - вероятный стимул. Его первыми производственными книгами были знаменитая ныне Библия Гутенберга . Считается, что было напечатано более 200 , но только 22 сохранились до до наших дней.

С этого времени существует немного записей о Гутенберге, но его изобретение впервые упоминается в свидетельских показаниях бывшего финансового спонсора Йохана Фуста о выплате. В этих показаниях описывается его тип, инвентарь металлов и типы форм, и дело в конечном итоге было потеряно Гутенбергом, а его пресс был конфискован Фурстом в качестве залога.

Реплика печатного станка Гутенберга. Источник: Graferocommons / Wikimedia Commons

Какое влияние оказала печатная машина и как она изменила мир?

Воздействие печатного станка практически невозможно оценить количественно.На первый взгляд, это позволяло гораздо более быстрое распространение точной информации, но, что еще более неуловимо, оказало огромное влияние на страны и население Европы в целом.

Благодаря, в немалой степени, прессе, грамотность начала расти, равно как и типы информации, которой люди могли подвергаться.

Примерно в это время Европа оправлялась от разрушительного удара Черной смерти. Это привело к сокращению населения и к упадку роста церкви, росту денежной экономики и последующему рождению Возрождения.

С другой стороны, печатный станок оказался «в нужном месте в нужное время», что помогло секуляризации западной культуры. Конечно, многие ранние тексты носили религиозный характер, но все больше и больше становились более светскими по своему характеру.

В это время наука могла процветать, и ранним ученым внезапно предложили невероятный инструмент для сотрудничества друг с другом по всему континенту.

Это также вырвало из рук церкви полный контроль над содержанием религиозных текстов.Больше не будет возможности централизованно контролировать и подвергать цензуре то, что написано на темы христианской и других верований.

К 1600-м годам в полную силу пришла научная революция Просвещения, которая навсегда изменила взгляд европейцев на мир и вселенную. Процесс мышления, который в конечном итоге приведет к промышленной революции - Спасибо, Гутенберг и др. !

Источник: Sidonius / Wikimedia Commons

Почему печатный станок был важен для Реформации?

Как мы видели, печатный станок оказал огромное влияние на распространение информации по Европе после его изобретения Гутенбергом в 1448 .В то время технология и печатные тексты быстро распространились по Европе.

Неслучайно это было время огромных изменений в культуре и религии на всем континенте. Это в конечном итоге изменит ход истории Европы и завершится протестантской Реформацией.

Никогда прежде интеллектуальные и религиозные лидеры не имели возможности распространять свое учение за пределы ограниченного собрания в любое время. Мартин Лютер, основатель протестантского движения, быстро воспользовался этим.

Печатный станок «означал больший доступ к информации, больше инакомыслия, более информированное обсуждение и более широкую критику властей», - отмечает Британская библиотека.

Мартин Лютер. Источник: Thierry Ehrmann / Flickr

По словам Марка У. Эдвардса (Гарвардская школа богословия), печатный станок обеспечил средство «формировать и направлять массовое движение [в идеях]». Проще говоря, без печатного станка неясно, произошла бы Реформация когда-либо.

Между 1500 и 1530 Мартин Лютер выпустил буквально сотни брошюр на немецком языке - всего 20% всех брошюр, выпущенных в то время.

Используя печатный станок таким образом, католическая церковь потеряла гегемонистский контроль над письменными материалами и, что более важно, сделала практически невозможным для них остановить распространение «еретических идей».

Это важно по многим причинам, но, в конечном счете, это можно рассматривать как огромный сдвиг в политическом мышлении, который будет способствовать дальнейшему технологическому и социальному развитию стран Европы.Это было, если использовать выражение, «действительно большое дело».

Какая книга была напечатана на печатном станке первой?

Первой книгой, напечатанной на прессе Гутенберга, была его, теперь уже знаменитая, Библия Гутенберга. Они стали невероятно популярными, и в короткие сроки было выпущено 200 экземпляров .

Фактически, они были настолько популярны, что многие из них были проданы задолго до того, как были напечатаны.

Содержание его Библии было основано на версиях, которые в настоящее время распространяются в районе Рейна в Германии между 14 и 15 веками. После этого его версия станет де-факто стандартной версией Библии и станет шаблоном для всех будущих библейских текстов.

Сохранившаяся копия Библии Гутенберга в Библиотеке редких книг и рукописей Бейнеке. Источник: Карл Томас Мур / Wikimedia Commons

Как печатный станок изменил Европу, и мир?

Печатный станок в конечном итоге приведет к некоторым крупным реформам по всему континенту. Быстрое производство и легкое распространение стандартизированных текстов предоставит мыслителям (религиозным, научным или другим) средство массового производства текстов и их относительно легкого распространения.

С его помощью книги могли производиться серийно в таких масштабах, с которыми рукописные тексты просто не могли конкурировать с точки зрения объема и цены.

Печатные машины резко сократят стоимость производства книг и, благодаря более легкому доступу к текстам, значительно повысят уровень грамотности жителей Европы.

Он также заложил основы для облегченных исследований и научных публикаций, которые положили начало движению Возрождения. Важность этого нельзя недооценивать для истории и развития Европы и мира в целом.

Источник: Tentotwo / Wikimedia Commons

Печатный станок разрушил централизованный контроль и цензуру публикуемых материалов и позволил новым идеям буквально «распространяться со скоростью лесного пожара» невиданным ранее образом.

Это также привело к развитию новых профессий и профессий: от печатников до ремесленников до корректуры и, возможно, графического дизайна, и многие другие профессии стали совершенно новыми. Профессии, которые существуют и по сей день.

Современный мир был бы совсем другим без Гутенберга и его печатного станка.

.

Simple English Wikipedia, бесплатная энциклопедия

Некоторые химические элементы называются металлами . Они являются большинством элементов периодической таблицы. Эти элементы обычно обладают следующими свойствами:

  1. Они могут проводить электричество и тепло.
  2. Их легко сформировать.
  3. У них блестящий вид.
  4. Они имеют высокую температуру плавления.

Большинство металлов остаются твердыми при комнатной температуре, но это не обязательно.Ртуть жидкая. Сплавы - это смеси, в которых хотя бы одна часть смеси представляет собой металл. Примеры металлов: алюминий, медь, железо, олово, золото, свинец, серебро, титан, уран и цинк. Хорошо известные сплавы включают бронзу и сталь.

Изучение металлов называется металлургией.

Признаки сходства металлов (свойства металлов) [изменить | изменить источник]

Большинство металлов твердые, блестящие, они кажутся тяжелыми и плавятся только при очень высоких температурах.Куски металла издают звон колокольчика при ударе чего-то тяжелого (они звонкие). Тепло и электричество могут легко проходить через металл (он проводящий). Кусок металла можно разбить на тонкий лист (он ковкий) или растянуть на тонкую проволоку (он пластичный). Металл трудно разорвать (у него высокая прочность на разрыв) или разбить (у него высокая прочность на сжатие). Если надавить на длинный тонкий кусок металла, он гнется, а не сломается (он эластичный). За исключением цезия, меди и золота, металлы имеют нейтральный серебристый цвет.

Не все металлы обладают этими свойствами. Ртуть, например, жидкая при комнатной температуре, свинец очень мягкий, а тепло и электричество не проходят через железо так, как через медь.

Мост в России металлический, вероятно, железный или стальной.

Металлы очень полезны людям. Их используют для изготовления инструментов, потому что они могут быть прочными и легко поддающимися обработке. Из железа и стали строили мосты, здания или корабли.

Некоторые металлы используются для изготовления таких предметов, как монеты, потому что они твердые и не изнашиваются быстро.Например, медь (блестящая и красного цвета), алюминий (блестящая и белая), золото (желтая и блестящая), а также серебро и никель (также белые и блестящие).

Некоторые металлы, например сталь, можно сделать острыми и оставаться острыми, поэтому их можно использовать для изготовления ножей, топоров или бритв.

Редкие металлы высокой стоимости, такие как золото, серебро и платина, часто используются для изготовления ювелирных изделий. Металлы также используются для изготовления крепежа и шурупов. Кастрюли, используемые для приготовления пищи, могут быть сделаны из меди, алюминия, стали или железа.Свинец очень тяжелый и плотный, и его можно использовать в качестве балласта на лодках, чтобы не допустить их опрокидывания или защитить людей от ионизирующего излучения.

Многие изделия, сделанные из металлов, на самом деле могут быть сделаны из смесей по крайней мере одного металла с другими металлами или с неметаллами. Эти смеси называются сплавами. Некоторые распространенные сплавы:

Люди впервые начали делать вещи из металла более 9000 лет назад, когда они обнаружили, как получать медь из [] руды. Затем они научились делать более твердый сплав - бронзу, добавляя к ней олово.Около 3000 лет назад они открыли железо. Добавляя небольшое количество углерода в железо, они обнаружили, что из них можно получить особенно полезный сплав - сталь.

В химии металл - это слово, обозначающее группу химических элементов, обладающих определенными свойствами. Атомы металла легко теряют электрон и становятся положительными ионами или катионами. Таким образом, металлы не похожи на два других вида элементов - неметаллы и металлоиды. Большинство элементов периодической таблицы - металлы.

В периодической таблице мы можем провести зигзагообразную линию от элемента бора (символ B) до элемента полония (символ Po). Элементы, через которые проходит эта линия, - это металлоиды. Элементы, расположенные выше и справа от этой линии, являются неметаллами. Остальные элементы - это металлы.

Большинство свойств металлов обусловлено тем, что атомы в металле не очень крепко удерживают свои электроны. Каждый атом отделен от других тонким слоем валентных электронов.

Однако некоторые металлы отличаются. Примером может служить металлический натрий. Он мягкий, плавится при низкой температуре и настолько легкий, что плавает на воде. Однако людям не следует пробовать это, потому что еще одно свойство натрия состоит в том, что он взрывается при соприкосновении с водой.

Большинство металлов химически стабильны и не вступают в реакцию легко, но некоторые реагируют. Реактивными являются щелочные металлы, такие как натрий (символ Na) и щелочноземельные металлы, такие как кальций (символ Ca). Когда металлы действительно вступают в реакцию, они часто реагируют с кислородом.Оксиды металлов являются основными. Оксиды неметаллов кислые.

Соединения, в которых атомы металлов соединены с другими атомами, образуя молекулы, вероятно, являются наиболее распространенными веществами на Земле. Например, поваренная соль - это соединение натрия.

Кусок чистой меди, найденной как самородная медь

Считается, что использование металлов - это то, что отличает людей от животных. До того, как стали использовать металлы, люди делали инструменты из камня, дерева и костей животных. Сейчас это называется каменным веком.

Никто не знает, когда был найден и использован первый металл. Вероятно, это была так называемая самородная медь, которую иногда находят большими кусками на земле. Люди научились делать из него медные инструменты и другие вещи, хотя для металла он довольно мягкий. Они научились плавке, чтобы получать медь из обычных руд. Когда медь плавили на огне, люди научились делать сплав под названием бронза, который намного тверже и прочнее меди. Из бронзы делали ножи и оружие.Это время в истории человечества примерно после 3300 г. до н.э. часто называют бронзовым веком, то есть временем бронзовых инструментов и оружия.

Примерно в 1200 году до нашей эры некоторые люди научились делать железные орудия труда и оружие. Они были даже тверже и прочнее бронзы, и это было преимуществом на войне. Время железных инструментов и оружия теперь называется железным веком. . Металлы были очень важны в истории человечества и цивилизации. Железо и сталь сыграли важную роль в создании машин. Золото и серебро использовались в качестве денег, чтобы люди могли торговать, то есть обмениваться товарами и услугами на большие расстояния.

В астрономии металл - это любой элемент, кроме водорода или гелия. Это потому, что эти два элемента (а иногда и литий) - единственные, которые образуются вне звезд. В небе спектрометр может видеть признаки металлов и показывать астроному металлы в звезде.

В организме человека некоторые металлы являются важными питательными веществами, такими как железо, кобальт и цинк. Некоторые металлы могут быть безвредными, например рутений, серебро и индий. Некоторые металлы могут быть токсичными в больших количествах. Другие металлы, такие как кадмий, ртуть и свинец, очень ядовиты.Источники отравления металлами включают горнодобывающую промышленность, хвостохранилища, промышленные отходы, сельскохозяйственные стоки, профессиональные воздействия, краски и обработанную древесину.

.

Загрязнение пластиком - наш мир в данных

  • Предполагается, что масса 75 кг на человека [(381 000 000 * 1 000 кг) / 75 кг на человека = 5 080 000 000 человек]

  • Данные, используемые на этом рисунке, основаны на Science , исследование: Джамбек, Дж. Р., Гейер, Р., Уилкокс, К., Зиглер, Т. Р., Перриман, М., Андради, А.,… и Ло, К. Л. (2015). Пластиковые отходы поступают с суши в океан. Наука , 347 (6223), 768-771. Доступно по адресу: http: //science.sciencemag.org / content / 347/6223/768.

  • Предполагается, что масса 75 кг на человека [(381 000 000 * 1 000 кг) / 75 кг на человека = 5 080 000 000 человек]

  • Гейер Р., Джамбек Дж. Р. и Ло К. Л. (2017). Производство, использование и судьба всех когда-либо изготовленных пластмасс. Science Advances , 3 (7), e1700782. Доступно по адресу: http://advances.sciencemag.org/content/3/7/e1700782.

  • Гейер, Р., Джамбек, Дж. Р., и Ло, К. Л. (2017). Производство, использование и судьба всех когда-либо изготовленных пластмасс. Science Advances , 3 (7), e1700782. Доступно по адресу: http://advances.sciencemag.org/content/3/7/e1700782.

  • Гейер, Р., Джамбек, Дж. Р., и Ло, К. Л. (2017). Производство, использование и судьба всех когда-либо изготовленных пластмасс. Science Advances , 3 (7), e1700782. Доступно по адресу: http://advances.sciencemag.org/content/3/7/e1700782.

  • Гейер, Р., Джамбек, Дж. Р., и Ло, К. Л. (2017). Производство, использование и судьба всех когда-либо изготовленных пластмасс. Science Advances , 3 (7), e1700782. Доступно по адресу: http://advances.sciencemag.org/content/3/7/e1700782.

  • Джамбек, Дж. Р., Гейер, Р., Уилкокс, К., Зиглер, Т. Р., Перриман, М., Андради, А.,… и Ло, К. Л. (2015). Пластиковые отходы поступают с суши в океан. Наука, 347 (6223), 768-771. Доступно по адресу: http://science.sciencemag.org/content/347/6223/768.

  • Джамбек, Дж. Р., Гейер, Р., Уилкокс, К., Зиглер, Т. Р., Перриман, М., Андради, А.,… и Ло, К. Л. (2015). Пластиковые отходы поступают с суши в океан. Наука, 347 (6223), 768-771. Доступно по адресу: http://science.sciencemag.org/content/347/6223/768.

  • Как видно из диаграммы, на долю Северной Америки приходилось 0,9 процента неумелого обращения с пластиком в мире, а на Европу и Центральную Азию - 3,6 процента. Если бы производство пластика (и, следовательно, потенциальные поступления в океан) в этих регионах было ликвидировано, объем неумелого обращения с пластиком в мире снизился бы всего на 4.5 процентов.

  • Эти прогнозы предполагают рост темпов производства пластмассы и населения, но что доля образования пластмассовых отходов, которая управляется надлежащим образом, остается постоянной.

  • Таким образом, ожидается, что в период с 2010 по 2025 год произойдет небольшой сдвиг в относительном вкладе Северной и Южной Америки, Европы и Северной Африки в сторону Африки к югу от Сахары и Южной Азии. Восточная Азия в относительном выражении останется примерно неизменной.

  • Ли, В. К., Цзе, Х. Ф., и Фок, Л. (2016). Пластиковые отходы в морской среде: обзор источников, возникновения и последствий. Наука об окружающей среде в целом , 566 , 333-349. Доступно по адресу: https://www.sciencedirect.com/science/article/pii/S0048969716310154.

  • ЮНЕП и ФАО (2009). Брошенные, утерянные или выброшенные иным образом рыболовные снасти. Технический доклад ФАО по рыболовству и аквакультуре № 523; Отчеты и исследования региональных морей ЮНЕП No.185. Доступно по адресу: http://www.fao.org/docrep/011/i0620e/i0620e00.htm.

  • Лебретон, Л., Слат, Б., Феррари, Ф., Сент-Роуз, Б., Эйткен, Дж., Мартхаус, Р.,… и Нобл, К. (2018). Свидетельства того, что на Большом тихоокеанском мусорном поле быстро накапливается пластик Scientific Reports , 8 (1), 4666. Доступно по адресу: https://www.nature.com/articles/s41598-018-22939-w.

  • Лебретон, Л., Слат, Б., Феррари, Ф., Сент-Роуз, Б., Эйткен, Дж., Marthouse, R.,… & Noble, K. (2018). Свидетельства того, что на Большом тихоокеанском мусорном поле быстро накапливается пластик Scientific Reports , 8 (1), 4666. Доступно по адресу: https://www.nature.com/articles/s41598-018-22939-w.

  • Лебретон, Л. К., Ван дер Цвет, Дж., Дамстиг, Дж. У., Слат, Б., Андради, А., и Рейссер, Дж. (2017). Выбросы речного пластика в Мировой океан. Nature Communications, 8, 15611. Доступно по адресу: https://www.nature.com/articles/ncomms15611.

  • Эриксен, М., Лебретон, Л. К., Карсон, Х. С., Тиль, М., Мур, К. Дж., Борерро, Дж. К.,… и Райссер, Дж. (2014). Загрязнение Мирового океана пластиком: более 5 триллионов пластиковых деталей весом более 250 000 тонн находятся на плаву в море. PloS one, 9 (12), e111913. Доступно по адресу: http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0111913.

  • Эриксен, М., Лебретон, Л. К., Карсон, Х. С., Тиль, М., Мур, К. Дж., Борерро, Дж. К.,… и Рейссер, Дж.(2014). Загрязнение Мирового океана пластиком: более 5 триллионов пластиковых деталей весом более 250 000 тонн находятся на плаву в море. PloS one, 9 (12), e111913. Доступно по адресу: http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0111913.

  • Лебретон, Л., Слат, Б., Феррари, Ф., Сент-Роуз, Б., Эйткен, Дж., Мартхаус, Р.,… и Нобл, К. (2018). Свидетельства того, что на Большом тихоокеанском мусорном поле быстро накапливается пластик Научные отчеты , 8 (1), 4666.Доступно по адресу: https://www.nature.com/articles/s41598-018-22939-w.

  • Сообщаемая площадь суши Испании составляет приблизительно 500 000 квадратных километров, а Аляска - приблизительно 1,5 миллиона квадратных километров.

  • Джамбек, Дж. Р., Гейер, Р., Уилкокс, К., Зиглер, Т. Р., Перриман, М., Андради, А.,… и Ло, К. Л. (2015). Пластиковые отходы поступают с суши в океан. Наука , 347 (6223), 768-771.

  • Оценки для этой цифры колеблются от 4 до 12 миллионов тонн, с 8 миллионами в качестве средней точки.В контексте этого обсуждения неопределенность в этой величине менее важна: разница между поступлением пластика в океан и наблюдаемым пластиком в поверхностных водах океана составляет несколько порядков, а не кратных.

  • Эриксен, М. и др. Загрязнение Мирового океана пластиком: более 5 триллионов пластиковых деталей весом более 250 000 тонн находятся на плаву в море. Plos One 9, e111913 (2014).

  • Лебретон, Л., Слат, Б., Феррари, Ф., Сент-Роуз, Б., Эйткен, Дж., Мартхаус, Р.,… и Нобл, К. (2018). Свидетельства того, что на Большом тихоокеанском мусорном поле быстро накапливается пластик Scientific Reports , 8 (1), 4666. Доступно по адресу: https://www.nature.com/articles/s41598-018-22939-w.

  • Кресси, Д. (2016). Бутылки, пакеты, веревки и зубные щетки: борьба за обнаружение пластика в океане. Nature News , 536 (7616), 263.

  • Lebreton, L., Egger, M., & Slat, B.(2019). Глобальный баланс массы положительно плавучих макропластовых обломков в океане. Научные отчеты , 9 (1), 1-10.

  • Вудалл, Л. К., Санчес-Видаль, А., Каналс, М., Патерсон, Г. Л., Коппок, Р., Слейт, В.,… и Томпсон, Р. С. (2014). Глубокое море является основным стоком для микропластикового мусора. Royal Society Open Science , 1 (4), 140317.

  • Lebreton, L., Egger, M., & Slat, B. (2019). Глобальный баланс массы положительно плавучего макропластового мусора в океане. Научные отчеты , 9 (1), 1-10.

  • Согласно сценариям роста авторы предполагают, что ежегодные темпы роста будут соответствовать среднему увеличению мирового производства пластика за десятилетие с 2005 по 2015 год.

  • Эти данные также представлены в обзоре Law (2017): Law, K. L. (2017). Пластмассы в морской среде. Ежегодный обзор морских наук , 9 , 205-229. Доступно на: https: //www.annualreviews.org / doi / pdf / 10.1146 / annurev-marine-010816-060409.

  • Рочман, К. М., Браун, М. А., Андервуд, А. Дж., Ван Франекер, Дж. А., Томпсон, Р. К., и Амарал-Зеттлер, Л. А. (2016). Воздействие морского мусора на окружающую среду: выявление продемонстрированных свидетельств от того, что воспринимается. Экология , 97 (2), 302-312. Доступно по адресу: https://esajournals.onlinelibrary.wiley.com/doi/full/10.1890/14-2070.1.

  • Закон, К. Л. (2017). Пластмассы в морской среде. Ежегодный обзор морских наук , 9 , 205-229. Доступно по адресу: https://www.annualreviews.org/doi/pdf/10.1146/annurev-marine-010816-060409.

  • Кюн, С., Реболледо, Э. Л. Б., и ван Франекер, Дж. А. (2015). Пагубное воздействие мусора на морскую жизнь. В Морской антропогенный мусор (стр. 75-116). Спрингер, Чам. Доступно по адресу: https://link.springer.com/chapter/10.1007/978-3-319-16510-3_4.

  • Галл, С. К., & Томпсон, Р.С. (2015). Воздействие мусора на морскую жизнь. Бюллетень загрязнения морской среды , 92 (1-2), 170-179. Доступно по адресу: https://www.sciencedirect.com/science/article/pii/S0025326X14008571.

  • Кюн, С., Реболледо, Э. Л. Б., и ван Франекер, Дж. А. (2015). Пагубное воздействие мусора на морскую жизнь. В Морской антропогенный мусор (стр. 75-116). Спрингер, Чам. Доступно по адресу: https://link.springer.com/chapter/10.1007/978-3-319-16510-3_4.

  • Кюн, С., Реболледо, Э. Л. Б., и ван Франекер, Дж. А. (2015). Пагубное воздействие мусора на морскую жизнь. В Морской антропогенный мусор (стр. 75-116). Спрингер, Чам. Доступно по адресу: https://link.springer.com/chapter/10.1007/978-3-319-16510-3_4.

  • de Stephanis R, Gimenez J, Carpinelli E, Gutierrez-Exposito C, Canadas A. 2013. В качестве основного корма для кашалотов: остатки пластика. Бюллетень загрязнения моря 69: 206–14.

  • Day RH, Wehle DHS, Coleman FC.1985. Проглатывание пластиковых загрязнителей морскими птицами. В материалах семинара о судьбе и воздействии морского мусора, 27–29 ноября 1984 г., Гонолулу, Гавайи, изд. RS Shomura, HO Yoshida, стр. 344–86. Tech. Памятка. NOAA-TM-NMFS-SWFC-54. Вашингтон, округ Колумбия: Natl. Океан. Атмос. Адм.

  • Browne MA, Niven SJ, Galloway TS, Rowland SJ, Thompson RC. 2013. Микропластик перемещает загрязнители и добавки к червям, уменьшая функции, связанные со здоровьем и биоразнообразием. Текущая биология 23: 2388–92.

  • Седервалл Т., Ханссон Л.А., Лард М., Фром Б., Линсе С. 2012. Транспорт наночастиц по пищевой цепи влияет на поведение и метаболизм жиров у рыб. PLOS ONE 7: e32254

  • Oliveira M, Ribeiro A, Hylland K, Guilhermino L. 2013. Единичное и комбинированное воздействие микропластика и пирена на молодь (группа 0+) бычка обыкновенного Pomatoschistus microps (Teleostei, Gobiidae ). Экологические показатели 34: 641–47

  • Рохман К.М., Хох Э., Куробе Т., Тех С.Дж.2013. Проглоченный пластик переносит опасные химические вещества в рыбу и вызывает печеночный стресс. Scientific Reports 3: 3263

  • Galloway, T. S., Cole, M., & Lewis, C. (2017). Взаимодействие микропластикового мусора в морской экосистеме. Nature Ecology & Evolution , 1 (5), 0116. Доступно по адресу: https://www.nature.com/articles/s41559-017-0116.

  • Oliveira, M., Ribeiro, A., Hylland, K. & Guilhermino, L. Отдельное и комбинированное воздействие микропластиков и пирена на молодь (группа 0+) обыкновенного бычка Pomatoschistus microps (Teleostei, Gobiidae )
    . Экологические индикаторы, 34 , 641–647 (2013). Доступно по адресу: https://www.sciencedirect.com/science/article/pii/S1470160X13002501.

  • Рист, С.Э. и др. . Взвешенные микрочастицы ПВХ ухудшают продуктивность и снижают выживаемость азиатских зеленых мидий Perna viridis
    . Бюллетень загрязнения морской среды 111 , 213–220 (2016). Доступно по адресу: https://www.sciencedirect.com/science/article/pii/S0025326X16305380.

  • Ogonowski, M., Schür, C., Jarsén, Å. & Горохова, Е. Влияние природных и антропогенных микрочастиц на индивидуальную приспособленность Daphnia magna .
    PLoS ONE 11 , e0155063 (2016). Доступно по адресу: http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0155063.

  • Рист, С.Э. и др. . Взвешенные микрочастицы ПВХ ухудшают продуктивность и снижают выживаемость азиатских зеленых мидий Perna viridis
    . Бюллетень загрязнения морской среды 111 , 213–220 (2016). Доступно по адресу: https://www.sciencedirect.com/science/article/pii/S0025326X16305380.

  • Коул, М., Линдек, П., Филман, Э., Холсбанд, К. и Галлоуэй, Т. Влияние микропластиков из полистирола на питание, функции и плодовитость морских копепод Calanus helgolandicus .
    Окружающая среда, наука и технологии, 49 , 1130–1137 (2015). Доступно по адресу: https: // www.ncbi.nlm.nih.gov/pubmed/25563688.

  • Ogonowski, M., Schür, C., Jarsén, Å. & Горохова, Е. Влияние природных и антропогенных микрочастиц на индивидуальную приспособленность
    Daphnia magna . PLoS ONE, 11 , e0155063 (2016). Доступно по адресу: http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0155063.

  • Велден Н.А. и Коуи П.Р. Окружающая среда и морфология кишечника влияют на удержание микропластов в лангустине, Nephrops norvegicus .
    Environment Pollution, 214 , 859–865 (2016). Доступно на: http://oro.open.ac.uk/47539/.

  • Ваттс, А. Дж. Р., Урбина, М. А., Корр, С., Льюис, К. и Галлоуэй, Т. С. Проглатывание пластиковых микроволокон крабом Carcinus maenas и его влияние на потребление пищи и энергетический баланс.
    Окружающая среда, наука и технологии, 49 , 14597–14604 (2015). Доступно по адресу: https://pubs.acs.org/doi/10.1021/acs.est.5b04026.

  • Райт, С., Роу, Д., Томпсон, Р. К. и Галлоуэй, Т. С. Проглатывание микропластика снижает запасы энергии у морских червей
    . Современная биология. 23 , 1031–1033 (2013). Доступно по адресу: https://core.ac.uk/download/pdf/43097705.pdf.

  • Галлоуэй, Т.С., Коул, М., и Льюис, К. (2017). Взаимодействие микропластикового мусора в морской экосистеме. Nature Ecology & Evolution , 1 (5), 0116.Доступно по ссылке: https://www.nature.com/articles/s41559-017-0116.

  • Ревель, М., Шатель, А., и Мунейрак, К. (2018). Микро (нано) пластмассы: угроза здоровью человека ?. Current Opinion in Environmental Science & Health , 1 , 17-23. Доступно по адресу: https://www.sciencedirect.com/science/article/pii/S2468584417300235.

  • Галлоуэй Т.С. (2015) Микро- и нанопластики и здоровье человека. В: Bergmann M., Gutow L., Klages M. (eds) Морской антропогенный мусор .Доступно по адресу: https://link.springer.com/chapter/10.1007/978-3-319-16510-3_13.

  • Гювен, О., Гёкдаг, К., Йованович, Б., и Кидейш, А. Э. (2017). Микропластический состав подстилки турецких территориальных вод Средиземного моря и его наличие в желудочно-кишечном тракте рыб. Загрязнение окружающей среды , 223 , 286-294. Доступно по адресу: https://www.sciencedirect.com/science/article/pii/S0269749116323910.

  • Джабин, К., Су, Л., Ли, Дж., Ян, Д., Тонг, К., Му, Дж., И Ши, Х. (2017). Микропластики и мезопластики в рыбе прибрежных и пресных вод Китая. Загрязнение окружающей среды , 221 , 141-149. Доступно по адресу: https://www.sciencedirect.com/science/article/pii/S0269749116311666.

  • Галлоуэй Т.С. (2015) Микро- и нанопластики и здоровье человека. В: Bergmann M., Gutow L., Klages M. (eds) Морской антропогенный мусор . Доступно по ссылке: https: //.springer.com/chapter/10.1007/978-3-319-16510-3_13.

  • Боумистер, Х., Холлман, П. К., и Петерс, Р. Дж. (2015). Потенциальное воздействие на здоровье высвобождаемых из окружающей среды микро- и нанопластиков в цепочке производства продуктов питания для человека: опыт нанотоксикологии. Наука об окружающей среде и технологии , 49 (15), 8932-8947. Доступно по адресу: https://pubs.acs.org/doi/abs/10.1021/acs.est.5b01090.

  • Van Cauwenberghe, L., & Janssen, C.Р. (2014). Микропластик двустворчатых моллюсков, выращиваемых для потребления человеком. Загрязнение окружающей среды , 193 , 65-70. Доступно по адресу: https://www.sciencedirect.com/science/article/pii/S0269749114002425.

  • Liebezeit, G., & Liebezeit, E. (2013). Не содержащие пыльцы частицы в меде и сахаре. Пищевые добавки и загрязняющие вещества: Часть A , 30 (12), 2136-2140. Доступно по адресу: https://www.tandfonline.com/doi/abs/10.1080/19440049.2013.843025.

  • Liebezeit, G., & Liebezeit, E. (2014). Синтетические частицы как загрязнители в немецком пиве. Пищевые добавки и загрязнители: Часть A , 31 (9), 1574-1578. Доступно по адресу: https://www.tandfonline.com/doi/abs/10.1080/19440049.2014.945099.

  • Янг Д., Ши, Х., Ли, Л., Ли, Дж., Джабин, К., и Коландхасами, П. (2015). Загрязнение микропластиком в столовой соли из Китая. Наука об окружающей среде и технологии , 49 (22), 13622-13627.Доступно по адресу: https://pubs.acs.org/doi/abs/10.1021/acs.est.5b03163.

  • Ван, Дж., Тан, З., Пэн, Дж., Цю, К., и Ли, М. (2016). Поведение микропластиков в морской среде. Исследования морской среды , 113 , 7-17. Доступно по адресу: https://www.sciencedirect.com/science/article/pii/S0141113615300659.

  • Фоекема, Э. М., Де Грюйтер, К., Мергия, М. Т., ван Франекер, Дж. А., Мерк, А. Дж., И Келманс, А. А. (2013).Пластик в северной морской рыбе. Наука об окружающей среде и технологии , 47 (15), 8818-8824. Доступно по адресу: https://pubs.acs.org/doi/abs/10.1021/es400931b.

  • Иньигес, М. Э., Конеса, Дж. А., и Фуллана, А. (2017). Микропластики в испанской столовой соли. Scientific Reports , 7 (1), 8620. Доступно по адресу: https://www.nature.com/articles/s41598-017-09128-x.

  • Например, полихлорированный бифенил; Печатная плата.

  • Биомагнификация (иногда называемая «биоусилением» или «биологическим увеличением») - это возрастающая концентрация вещества в тканях организмов на последовательно более высоких уровнях в пищевой цепи.Это происходит, когда организмы на более высоких трофических уровнях поедают значительные массы зараженных организмов на более низких уровнях; при повышенном потреблении эти концентрации могут увеличиваться.

  • Девризе, Л. И., Де Витте, Б., Ветаак, А. Д., Хостенс, К., и Лесли, Х. А. (2017). Биоаккумуляция ПХБ из микропластиков в норвежском лобстере (Nephrops norvegicus): экспериментальное исследование. Chemosphere , 186 , 10-16. Доступно по адресу: https://www.sciencedirect.com/science/article/pii/S0045653517311724.

  • Авио, К. Г., Горби, С., Милан, М., Бенедетти, М., Фатторини, Д., д'Эррико, Г.,… и Реголи, Ф. (2015). Биодоступность загрязнителей и токсикологический риск от микропластиков для морских мидий. Загрязнение окружающей среды , 198 , 211-222. Доступно по адресу: https://www.sciencedirect.com/science/article/pii/S0045653517311724.

  • Брукс, А. Л., Ван, С., и Джамбек, Дж. Р. (2018). Запрет Китая на импорт и его влияние на мировую торговлю пластиковыми отходами.Научные достижения, 4 (6), eaat0131. Доступно по адресу: http://advances.sciencemag.org/content/4/6/eaat0131.

  • Министерство охраны окружающей среды Китая, «Объявление о выпуске каталогов управления импортируемыми отходами» (Объявление № 39, 2017).

  • Брукс, А. Л., Ван, С., и Джамбек, Дж. Р. (2018). Запрет Китая на импорт и его влияние на мировую торговлю пластиковыми отходами. Научные достижения, 4 (6), eaat0131. Доступно по адресу: http: //advances.sciencemag.org / content / 4/6 / eaat0131.

  • Брукс, А. Л., Ван, С., и Джамбек, Дж. Р. (2018). Запрет Китая на импорт и его влияние на мировую торговлю пластиковыми отходами. Научные достижения, 4 (6), eaat0131. Доступно по адресу: http://advances.sciencemag.org/content/4/6/eaat0131.

  • Джамбек, Дж. Р., Гейер, Р., Уилкокс, К., Зиглер, Т. Р., Перриман, М., Андради, А.,… и Ло, К. Л. (2015). Пластиковые отходы поступают с суши в океан. Наука, 347 (6223), 768-771. Доступно по адресу: http: // science.sciencemag.org/content/347/6223/768.

  • Джамбек, Дж. Р., Гейер, Р., Уилкокс, К., Зиглер, Т. Р., Перриман, М., Андради, А.,… и Ло, К. Л. (2015). Пластиковые отходы поступают с суши в океан. Наука, 347 (6223), 768-771. Доступно по адресу: http://science.sciencemag.org/content/347/6223/768.

  • Эриксен, М., Лебретон, Л. К., Карсон, Х. С., Тиль, М., Мур, К. Дж., Борерро, Дж. К.,… и Райссер, Дж. (2014). Загрязнение Мирового океана пластиком: более 5 триллионов пластиковых деталей весом более 250 000 тонн находятся на плаву в море.PloS one, 9 (12), e111913. Доступно по адресу: http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0111913.

  • Наши статьи и визуализации данных основаны на работе множества разных людей и организаций. При цитировании этой записи просьба также указать основные источники данных. Эту запись можно цитировать:

    .

    Смотрите также