Как изменяется сопротивление металлов при повышении температуры


Зависимость сопротивления проводника от температуры

  

Практически в электротехнике выло выявлено, что с увеличением температуры сопротивление проводников из металла возрастает, а с понижением уменьшается. Для всех проводников из металла это изменение сопротивления почти одинаково и в среднем равно 0,4% на 1°С.

Если быть точным, то на самом деле при изменении температуры проводника изменяется его удельное сопротивление, которое имеет следующую зависимость:

 

где ρ и ρ0, R и R0 - соответственно удельные сопротивления и сопротивления проводника при температурах t и 0°С (шкала Цельсия), α - температурный коэффициент сопротивления, [α] = град-1 .

Изменение удельного сопротивления проводника приводит к изменения самого сопротивления, что видно из следующего выражения:

 

Зная электронную теорию строения вещества можно дать следующее объяснение увеличению сопротивления металлических проводников с повышением температуры. При увеличении температуры проводник получает тепловую энергию, которая несомненно передается всем атомам вещества, в результате чего .возрастает их тепловое движение. Увеличившееся тепловое движение атомов создает большее сопротивление направленному движению свободных электронов (увеличивается вероятность столкновения свободных электронов с атомами), от этого и возрастает сопротивление проводника.

 С понижением температуры направленное движение электронов облегчается (уменьшается возможность столкновения свободных электронов с атомами), и сопротивление проводника уменьшается. Этим объясняется интересное явление — сверхпроводимость металлов. Сверхпроводимость, т. е. уменьшение сопротивления металлов до нуля, наступает при огромной отрицательной температуре —273° С, называемой абсолютным нулем. При температуре абсолютного нуля атомы металла как бы застывают на месте, совершенно не препятствуя движению электронов.

График звисимости сопротивления металлического проводника от температуры представлен на рисунке 1.

Рисунок 1. График зависимости удельного сопротивления металлического проводника от температуры

 

Необходимо сказать, что сопротивление электролитов и полупроводников (уголь, селен и другие) с увеличением температуры уменьшается.

Температурная зависимость сопротивления электролита объясняется также в основном изменением удельного сопротивления,однако всегда температурный коэффициент сопротивления - α <0.

 

Поэтому кривая зависимости сопротивленя электролита от температуры имеет вид, представленый на рисунке 2.

 

Рисунок 1. График зависимости удельного сопротивления электролита от температуры

 Ддя полупроводников характер изменения удельного сопротивления от температуры будет схож с таковым для элетролитов.

ПОНРАВИЛАСЬ СТАТЬЯ? ПОДЕЛИСЬ С ДРУЗЬЯМИ В СОЦИАЛЬНЫХ СЕТЯХ!

Похожие материалы:

Добавить комментарий

Температурный коэффициент сопротивления | Физика проводников и изоляторов

  • Сетевые сайты:
    • Последний
    • Новости
    • Технические статьи
    • Последний
    • Проектов
    • Образование
    • Последний
    • Новости
    • Технические статьи
    • Обзор рынка
    • Образование
    • Последний
    • Новости
    • Мнение
    • Интервью
    • Особенности продукта
    • Исследования
    • Форумы
  • Авторизоваться
  • Присоединиться
    • Авторизоваться
    • Присоединиться к AAC
    • Или войдите с помощью

      • Facebook
      • Google

0:00 / 0:00

  • Подкаст
  • Последний
  • Подписывайся
    • Google
    • Spotify
.

Температурная зависимость удельного сопротивления - Материалы исследования для IIT JEE

  • Полный курс физики - 11 класс
  • ПРЕДЛАГАЕМАЯ ЦЕНА: рупий.2 968

  • Просмотр подробностей
 


Удельное сопротивление

Удельное сопротивление известно как удельное электрическое сопротивление или объемное сопротивление.Его можно определить как внутреннее свойство данного материала, которое показывает, как он противодействует току. Его также можно определить как сопротивление проводника с единичной длиной и единичной площадью поперечного сечения. Таким образом, это не зависит от длины и площади поперечного сечения материала. Но сопротивление материала зависит от длины и площади поперечного сечения материала. Удельное сопротивление выражается как ρ = R A / L, где R - сопротивление в омах, A - площадь поперечного сечения в квадратных метрах, а L - длина в метрах.Единица измерения удельного сопротивления - омметр.


Температурная зависимость удельного сопротивления

Удельное сопротивление материалов зависит от температуры. ρ t = ρ 0 [1 + α (T - T 0 ) - это уравнение, которое показывает связь между температурой и удельным сопротивлением материала. В уравнении ρ 0 - удельное сопротивление при стандартной температуре, ρ t - удельное сопротивление при t 0 C, T 0 - эталонная температура, а α - температурный коэффициент удельного сопротивления.

Изменение удельного сопротивления проводников

Мы знаем, что ток - это движение свободных электронов от одного атома к другому при наличии разности потенциалов. В проводниках нет запрещенной зоны между зоной проводимости и валентной зоной. Во многих случаях обе полосы перекрывают друг друга. Валентные электроны слабо связаны с ядром в проводниках. Обычно металлы или проводники имеют низкую энергию ионизации и поэтому очень легко теряют электроны.При подаче электрического тока делокализованные электроны могут свободно перемещаться внутри структуры. Так бывает при нормальной температуре.

При повышении температуры колебания ионов металлов в решетчатой ​​структуре возрастают. Атомы начинают колебаться с большей амплитудой. Эти колебания, в свою очередь, вызывают частые столкновения между свободными электронами и другими электронами. Каждое столкновение истощает часть энергии свободных электронов и делает их неспособными двигаться.Таким образом, он ограничивает движение делокализованных электронов. Когда происходит столкновение, скорость дрейфа электронов уменьшается. Это означает, что удельное сопротивление металла увеличивается и, таким образом, ток в металле уменьшается. Увеличение удельного сопротивления означает, что проводимость материала снижается.

Что касается металлов или проводников, то считается, что они имеют положительный температурный коэффициент. Значение α положительное. Для большинства металлов удельное сопротивление линейно увеличивается с повышением температуры в диапазоне 500 К. Примеры для положительного температурного коэффициента включают серебро, медь, золото и т. Д.

Температурная зависимость удельного сопротивления металлов


Изменение удельного сопротивления в полупроводниках

Кремний - это полупроводник. В полупроводниках ширина запрещенной зоны между зоной проводимости и валентной зоной мала. При 0K валентная зона полностью заполнена, а зона проводимости может быть пустой.Но при приложении небольшого количества энергии электроны легко перемещаются в зону проводимости. Кремний - это пример полупроводника. В нормальных условиях кремний играет роль плохого проводника. Каждый атом кремния связан с 4 другими атомами кремния. Связи между этими атомами представляют собой ковалентные связи, в которых электроны находятся в фиксированных позитонах. Таким образом, при 0K электроны не перемещаются внутри структуры решетки.

При повышении температуры запрещенная зона между двумя зонами становится очень меньше, и электроны перемещаются из валентной зоны в зону проводимости.Таким образом, некоторые электроны из ковалентных связей между атомами Si могут свободно перемещаться внутри структуры. Это увеличивает проводимость материала. Увеличение проводимости означает уменьшение удельного сопротивления. Таким образом, когда температура в полупроводнике повышается, плотность носителей заряда также увеличивается, а удельное сопротивление уменьшается. О полупроводниках говорят, что они имеют отрицательный температурный коэффициент. Таким образом, значение температурного коэффициента удельного сопротивления α отрицательно.

Кривая нелинейна в широком диапазоне температур.

Температурная зависимость от удельного сопротивления для полупроводников


Изменение удельного сопротивления в изоляторах

В изоляторах большой запрещенный энергетический зазор между зоной проводимости и валентной зоной. Валентная зона полностью заполнена электронами. Запрещенная щель между двумя зонами будет больше 3 eV. Таким образом, для перехода валентного электрона в зону проводимости требуется большое количество энергии.Алмаз - это пример изолятора. Здесь все валентные электроны участвуют в образовании ковалентной связи, и проводимости не происходит. Электроны прочно связаны с ядром.

Когда температура повышается, атомы материала колеблются, и это заставляет валентные электроны, присутствующие в валентной зоне, переходить в зону проводимости. Это, в свою очередь, увеличивает проводимость материала. Когда проводимость материала увеличивается, это означает, что удельное сопротивление уменьшается, и поэтому ток увеличивается.Таким образом, некоторые изоляторы при комнатной температуре превращаются в проводники при высокой температуре. Для изоляторов они имеют отрицательный температурный коэффициент. Таким образом, значение температурного коэффициента удельного сопротивления α отрицательно.

Проводники и изоляторы

Сверхпроводники

Мы знаем, что когда электрический ток проходит по проводникам, часть энергии теряется в виде тепла. Количество потерь энергии зависит от сопротивления материала.В 1911 году некоторые ученые охладили образец ртути до 4,2 ° выше абсолютного нуля. Таким образом, сопротивление материала упало до нуля. Так был открыт первый сверхпроводник. Таким образом, ученые обнаружили, что в некоторых случаях некоторые материалы не проявляют никакого сопротивления. Материалы с нулевым сопротивлением называются сверхпроводниками. При нулевом сопротивлении материалы проводят ток без потери энергии. Когда температура таких материалов снижается, свободные электроны перестают сталкиваться с положительными ионами и, таким образом, оказывает нулевое сопротивление.Температура, при которой сопротивление падает до нуля, называется критической температурой .

Когда сверхпроводник помещается в магнитное поле, магнитное поле изгибается вокруг материала, не позволяя магнитному полю проходить сквозь них. Когда напряженность магнитного поля увеличивается, в определенный момент поле может проникать через сверхпроводник и, таким образом, его поведение нарушается.

Считайте, что через сверхпроводник проходит электрический ток.Предположим, что плотность тока увеличивается, при определенном значении плотности тока он теряет свою сверхпроводимость и, наконец, ведет себя как нормальный материал. Плотность тока, выше которой материал теряет сверхпроводимость, называется критической плотностью тока. Высокая температура, сильное магнитное поле и высокая плотность тока разрушают сверхпроводимость материала. Сейчас эти материалы используются в аппаратах МРТ.

Прочие материалы

Удельное сопротивление таких материалов, как нихром, манганин и константан, не сильно зависит от температуры и показывает очень низкую зависимость.Следовательно, эти материалы используются в проволочных стандартных резисторах, поскольку изменение значения сопротивления незначительно при изменении температуры.

Манганин Константан


Факторы, влияющие на удельное сопротивление

Мы знаем, что удельное сопротивление ρ = m / ne 2 , где e - заряд электрона, ԏ - среднее время между столкновениями или время релаксации электронов, а m - масса электрона, n - плотность заряда.Таким образом, это показывает, что сопротивление зависит от ряда факторов, таких как время релаксации между столкновениями и плотность заряда. Из приведенных выше сценариев ясно, что при повышении температуры средняя скорость электронов увеличивается, и, следовательно, происходит больше столкновений. Таким образом, время релаксации между каждым столкновением уменьшается.

В случае металлов плотность заряда в определенной степени не зависит от температуры. Таким образом, это влияет на другие факторы, такие как ԏ, что означает, что при повышении температуры среднее время между столкновениями уменьшается, что приводит к увеличению удельного сопротивления.

Для полупроводников и изоляторов плотность заряда n увеличивается при повышении температуры. Это компенсирует уменьшение значения ԏ. Следовательно, удельное сопротивление уменьшается при понижении температуры.

Сводка

  • Удельное сопротивление - это сопротивление проводника, имеющего единицу длины и единицу площади поперечного сечения. Единица измерения удельного сопротивления - омметр. Формула: ρ = RA / L, где R - сопротивление в Ом, A - площадь поперечного сечения в квадратных метрах, а L - длина в метрах.

  • ρ t = ρ 0 [1 + α (T - T 0 ) - это уравнение, которое показывает связь между температурой и удельным сопротивлением материала. ρ 0 - удельное сопротивление при стандартной температуре, ρ t - удельное сопротивление при t 0 C, T 0 - эталонная температура, а α - температурный коэффициент удельного сопротивления.

  • Для металлов или проводников, когда температура увеличивается, и удельное сопротивление металла увеличивается, и, следовательно, ток в металле уменьшается.У них положительный температурный коэффициент. Значение α положительное.

  • Для полупроводников: при повышении температуры увеличивается проводимость материала. Это означает, что удельное сопротивление материала уменьшается, и поэтому ток увеличивается. Для полупроводников они имеют отрицательный температурный коэффициент. Таким образом, значение температурного коэффициента удельного сопротивления α отрицательно.

  • Для изоляторов электропроводность материала увеличивается при повышении температуры.Когда проводимость материала увеличивается, мы знаем, что удельное сопротивление уменьшается и, таким образом, увеличивается ток. Таким образом, некоторые изоляторы при комнатной температуре превращаются в проводники при высокой температуре. Для изоляторов они имеют отрицательный температурный коэффициент. Значение температурного коэффициента удельного сопротивления α отрицательно.

  • Материалы с нулевым сопротивлением называются сверхпроводниками. Температура, при которой сопротивление падает до нуля, называется критической температурой.Высокая температура, сильное магнитное поле и высокая плотность тока ослабят свойство сверхпроводимости материала. Меркурий - пример сверхпроводника.

  • Такие материалы, как нихром, манганин и константан, не сильно зависят от температуры. Таким образом, изменение удельного сопротивления материала при изменении температуры незначительно.


Посмотрите это видео, чтобы получить дополнительную информацию


Другие показания

Температурная зависимость удельного сопротивления


Особенности курса

  • 101 Видеолекция
  • Примечания к редакции
  • Документы за предыдущий год
  • Ментальная карта
  • Планировщик обучения
  • Решения NCERT
  • Обсуждение Форум
  • Тестовая бумага с видео-решением

.

Рабочий лист температурного коэффициента сопротивления

  • Сетевые сайты:
    • Последний
    • Новости
    • Технические статьи
    • Последний
    • Проектов
    • Образование
    • Последний
    • Новости
    • Технические статьи
    • Обзор рынка
    • Образование
    • Последний
    • Новости
    • Мнение
    • Интервью
    • Особенности продукта
    • Исследования
    • Форумы
  • Авторизоваться
  • Присоединиться
    • Авторизоваться
    • Присоединиться к AAC
    • Или войдите с помощью

      • Facebook
      • Google

.

(. 6) | Pandia.ru

б) изоляторы общие

4. Воздух, бумага и пластмассы -

а) изоляторы общие

б) общие жилы

5. при подаче высокого напряжения на изолятор

а) не проводит ток

б) проводит ток

6. изоляторы используются

а) для накопления электрического заряда

б) т) уменьшить напряжение

c) для предотвращения короткого замыкания между проводящими проводами

7.металлы повышают свою сопротивляемость

а) при понижении температуры

б) при повышении температуры

8. Углерод снижает сопротивление

а) при повышении температуры

б) при понижении температуры

9. Металлы имеют

а) положительный температурный коэффициент сопротивления l

б) отрицательный температурный коэффициент сопротивления l

В

Заканчивайте предложения словами с противоположным значением:

1.У проводников низкое сопротивление. 2. Ток через изоляторы проходит с большим трудом ... ....

3. Металлы - обычные проводники ... .... 4. Чтобы изоляторы проводили ток, должны быть приложены большие токи ... .... 5. Углерод снижает свое сопротивление при повышении температуры .... 6. Металлы имеют положительный температурный коэффициент сопротивления ....

С

Ответьте на следующие вопросы:

В чем разница между проводниками и изоляторами? 2.Как ток проходит через изоляторы? 3. Какие материалы обычно используются для изготовления изоляторов? 4. Какие материалы обычно используются для изготовления проводов? 5. В каком случае изоляторы проводят ток? 6. Как изменяется сопротивление при понижении температуры?

А

1 - б; 2 - а; 3 - а; 4 - а; 5 - б; 6 - а, в; 7 - б; 8 - а; 9 - а.

1. Изоляторы ... высокие

2. кондукторы.. легко

3. Изоляторы воздушные, бумажные, резиновые, пластмассовые

4. проводники .. низкие

5. металлы. Увеличение

6. карбон. отрицательный

1. значение сопротивления

2. с большим трудом

3. Воздух, бумага, резина, пластмассы

4. металлы

5. подано высокое напряжение

6. углерод увеличивается, металлы уменьшаются.


Урок 9

ТРАНСФОРМАТОРЫ

трансформатор

номер

передача

поворот

ядро ​​

получить

обмотка

шаг вверх

первичная обмотка

частота

вторичная обмотка

Трансформатор используется для передачи энергии; благодаря трансформатору электрическая мощность может передаваться с высоким напряжением и снижаться в точке, где она должна использоваться, до любого значения.Кроме того, трансформатор используется для изменения значения напряжения и тока в цепи.

Двухобмоточный трансформатор состоит из закрытого сердечника и двух катушек (обмоток). Первичная обмотка подключена к источнику напряжения. Он получает энергию. Вторичная обмотка подключена к сопротивлению нагрузки и подает энергию на нагрузку.

Значение напряжения на вторичной клемме зависит от количества витков в ней. Если оно равно количеству витков в первичной обмотке, то напряжение во вторичной обмотке такое же, как и в первичной,

.

Если вторичная обмотка имеет больше витков, чем первичная, выходное напряжение больше входного.Напряжение во вторичной обмотке превышает напряжение в первичной во столько раз, сколько количество витков во вторичной обмотке больше, чем количество витков в первичной обмотке. Трансформатор этого типа увеличивает или увеличивает напряжение и называется повышающим трансформатором. Если во вторичной обмотке меньше витков, чем в первичной, выходное напряжение ниже, чем при понижении или понижении напряжения трансформатора, это называется понижающим трансформатором.

Сравните T1 и T2. T1 имеет железный сердечник. По этой причине он используется для токов низкой частоты. Т2 имеет воздушный сердечник и используется для высоких частот.

Распространенные неисправности трансформаторов - обрыв в обмотке, короткое замыкание между первичной и вторичной обмотками и короткое замыкание между витками. В случае неисправности трансформатора он перестает работать или работает плохо. Заменить неисправный трансформатор.

; ,. ,.

- ().. . .

. ,,,.

,,,,. ,,,,. . ,,,,. ,.

1 2. 2. . 1.

-,. ,. .

УПРАЖНЕНИЯ

А

Найдите правильный вариант. Помните:

1. используется трансформатор

а) для накопления заряда

б) для предотвращения изменения энергии

в) для передачи энергии

г) для изменения значения напряжения и тока в цепи

2.электроэнергия передается при высоком напряжении и понижается

на любое значение

а) за счет резисторов

б) за счет конденсаторов

в) за счет трансформаторов

3. трансформатор состоит из

а) только ядер

б) первичная и вторичная обмотки

в) сердечник и первичная и вторичная обмотки

4. Функция первичного

а) для предотвращения изменения напряжения

б) для подачи энергии

в) для получения энергии

г) на перевод заряда

5.функция вторичного

а) для получения энергии

б) для подачи энергии

в) для передачи энергии

г) для уменьшения стоимости, заряда

6. Применяется повышающий трансформатор:

a) для понижения или уменьшения вторичного напряжения

б) для увеличения или увеличения первичного напряжения

7. используется понижающий трансформатор

а) для понижения вторичного напряжения

б) для понижения первичного напряжения.

8. трансформатор с железным сердечником

а) применяется для токов высокой частоты

б) используется для тока низкой частоты :,

9. Применяется трансформатор с воздушным сердечником

a) для токов высокой частоты и токов низкой частоты

б) только для токов высокой частоты

10. в повышающем трансформаторе

а) количество витков вторичной обмотки больше, чем количество витков

первичный

б) количество витков первичной обмотки больше числа витков вторичной

II.трансформатор заменить

а) в случае обрыва обмотки

b) в случае короткого замыкания между первичной обмоткой и

вторичный

в) в случае короткого замыкания между витками

BI

Заканчивайте предложения словами с противоположным значением:

1. Вторичная обмотка трансформатора подключена к сопротивлению нагрузки .... 2. Первичная обмотка получает энергию .... 3. Понижающий трансформатор снижает первичное напряжение.... 4. Трансформатор с воздушным сердечником используется для токов высокой частоты. .. .... 5. В повышающем трансформаторе количество витков вторичной обмотки больше, чем количество витков первичной обмотки ... ..... ..

С

Ответьте на следующие вопросы:

1. Для чего используется трансформатор? 2. Из чего состоит трансформатор? 3. Какова функция первичной обмотки? 4. Какова функция вторичной обмотки? 5. Какой тип трансформатора называется повышающим трансформатором? 6.Какой тип трансформатора используется для токов высокой частоты? 7. Какой тип трансформатора называется понижающим трансформатором? 8. Какой тип трансформатора используется для токов низкой частоты? 9. Какая связь между количеством витков в обмотках и величиной тока? 10. Каковы общие неисправности трансформатора? 11. Что делать в случае неисправности трансформатора

А

1-, д., Д. 2-, 3-, 4-в, 5-б, 6-б, 7-б, 8-б, 9-б, 10-а, 11-а, б, в.

1.Первичная обмотка ... источник напряжения

2. человек

3. ступенька вверх, .. увеличивается

4. железо ... низкое

5. понизить ... первичный ... вторичный

С

1. для передачи энергии, для изменения значения напряжения и тока

2. закрытый сердечник и две катушки

3. получает энергию

4. поставляет энергию

5. Повышает напряжение

6. воздушный стержень

7.понижает напряжение

8. сердечник железный

9. чем больше ... тем больше

10. Обрыв в обмотке, короткое замыкание между обмотками, короткое замыкание между витками

11. заменить.

Урок 10

ВИДЫ ТОКА

поток

переменный

прямой

цикл

направление

'в секунду

Ток - это прохождение электричества через цепь.Рассмотрим два основных типа тока; прямые и переменные. Постоянный ток (d. C.) Течет по проводящей цепи только в одном направлении . Протекает при подаче на цепь постоянного напряжения.

.

Смотрите также