Как из соли получить оксид металла


Общие способы получения оксидов — урок. Химия, 8–9 класс.

1. Оксиды образуются при взаимодействии простых веществ с кислородом.

 

Например, при сгорании водорода в кислороде образуется оксид водорода (вода):

2h3+O2→2h3O.

 

При нагревании меди на воздухе она покрывается налётом чёрного цвета, состоящим из оксида меди(\(II\)):

2Cu+O2→2CuO.

 

2. Оксиды можно получить путём обжига или при сжигании некоторых бинарных соединений.

 

Например, оксид цинка и оксид серы(\(IV\)) получают обжигом сульфида цинка:

2ZnS+3O2→2ZnO+2SO2.

 

3. Оксиды образуются при термическом разложении некоторых солей, оснований и кислот.

 

Например, при обжиге известняка, состоящего из карбоната кальция, образуются оксид кальция и углекислый газ: CaCO3→CaO+CO2.

 

Оксид меди(\(II\)) образуется при нагревании гидроксида меди(\(II\)): Cu(OH)2→CuO+h3O.

 

Угольная кислота разлагается даже без нагревания, выделяя оксид углерода(\(IV\)), т. е. углекислый газ: h3CO3→h3O+CO2.

 

Применение оксидов

Оксиды используются в самых разных отраслях народного хозяйства: в промышленности, в строительстве, при получении других веществ, в медицине, в быту и т. д. 

 

Оксиды используют в промышленности

  

В промышленности оксиды используются в качестве сырья.

 

Например, некоторые оксиды используются в качестве пигментов в производстве красок и эмалей. Именно на эти нужды в большом количестве расходуются оксид цинка ZnO, оксид титана(\(IV\)) TiO2 и оксид железа(\(III\)) Fe2O3.

 

При варке цветных стёкол в качестве пигментов используют оксид кобальта(\(III\)) Co2O3, оксид хрома(\(III\)) Cr2O3 и оксид марганца(\(IV\)) MnO2.

 

Из оксида серы(\(VI\)) SO3  производят серную кислоту h3SO4, а оксид кальция, или негашёная известь CaO, служит сырьём для получения гидроксида кальция, или гашёной извести Ca(OH)2.

Из оксида кремния SiO2 получают кремний, без которого в наши дни не может обойтись производство солнечных батарей и компьютеров.

 

Оксиды находят применение в пищевой промышленности и в сельском хозяйстве 

 

В качестве консерванта, а также для дезинфекции теплиц и складских помещений, используют оксид серы(\(IV\)), или сернистый газ SO2. Этот же оксид используют для отбеливания сахара.

Углекислый газ CO2 используют для газирования напитков, а также в производстве сахара.

 

Оксиды используют для обеспечения безопасности

  

В качестве надёжного средства для борьбы с огнём используют оксид водорода, т. е. воду h3O, а также оксид кремния SiO2 в виде песка.

Углекислый газ CO2 не поддерживает горения, поэтому им заполняют огнетушители.

Использование химических реакций для получения соли

Нейтрализация

Реакция между кислотой и основанием называется нейтрализацией. Именно так работают лекарства от расстройства желудка - они содержат химические вещества, которые реагируют и нейтрализуют избыток желудочной кислоты. Промышленность использует этот же метод для производства широкого спектра солей и продуктов.

Вот как работает нейтрализация:

Кислые растворы содержат ионы водорода (H + ).
Щелочные растворы содержат ионы гидроксида (OH - ).

Вот слово уравнение реакции между кислотой и щелочью:

Кислота + щелочь → соль + вода

Ионное уравнение для всех реакций нейтрализации:

H + (водн.) + OH - (водн.) → H 2 O (л)

Тип соли, образующейся в ходе реакции, зависит от используемых кислоты и щелочи.

Кислоты, щелочи и соли, которые они производят

При нейтрализации соляной кислоты образуются хлоридные соли.

Соляная кислота + гидроксид натрия → хлорид натрия + вода

При нейтрализации азотной кислоты образуются нитратные соли.

Азотная кислота + гидроксид калия → нитрат калия + вода.

При нейтрализации серной кислоты образуются сульфатные соли.

Серная кислота + гидроксид натрия → сульфат натрия + вода.

Изготовление солей из оксидов металлов

Оксиды металлов также могут использоваться в качестве оснований и вступать в реакцию с кислотами с образованием солей и воды.

Вот словесное уравнение реакции между кислотой и металлическим основанием:

Оксид металла + кислота → соль + вода

Например:
Оксид меди (CuO) + соляная кислота (2HCl) → хлорид меди (CuCl 2 ) + вода (H 2 0)

В то время как достаточно химически активные металлы могут реагировать с кислотами с образованием соли и водорода, соли очень инертных металлов, таких как медь, не могут быть получены таким образом, потому что эти металлы не реагируют с кислотами.

И соли очень реакционноспособных металлов, таких как натрий, не могут быть получены таким способом, потому что реакция между металлом и кислотой слишком интенсивна, чтобы ее можно было проводить безопасно.

Получение соли из реакции осаждения

Некоторые нерастворимые соли могут быть получены в результате реакции между двумя растворами. Сульфат бария - нерастворимая соль. Это может быть получено реакцией между растворами хлорида бария и сульфата натрия.
Например:
Хлорид бария + сульфат натрия → сульфат бария + хлорид натрия

Реакции осаждения могут использоваться для удаления нежелательных ионов из растворов. Этот метод используется для очистки питьевой воды и сточных вод.

Изготовление солей из карбонатов металлов

Кислоты могут нейтрализоваться карбонатами металлов с образованием солей. Большинство карбонатов металлов нерастворимы, поэтому они являются основаниями, но не щелочами.

Когда кислоты нейтрализуются карбонатами металлов, образуются соль, вода и диоксид углерода. Это означает, что такие породы, как известняк, содержащие карбонатные соединения, повреждаются кислотными дождями.

Вот слово уравнение реакции:

Карбонат металла + кислота → соль + вода + диоксид углерода

.

2:16 понять, как металлы могут быть расположены в ряду реактивности на основе их реакций замещения между: металлами и оксидами металлов, металлами и водными растворами солей металлов

перейти к содержанию
  • Темы
  • Списки характеристик
  • Разделы спецификаций
    • 1 Принципы химии
      • (a) Состояния вещества
      • (b) Элементы, соединения и смеси
      • (c) Атомная структура
      • (d) Периодическая таблица
      • (e) Химические формулы, уравнения и расчеты
      • (f) Ионная связь
        • 1:37 понять, как образуются ионы в результате потери или усиления электронов
        • 1:38 узнать заряды этих ионов: металлы в группах 1, 2 и 3, неметаллы в группах 5, 6 и 7, Ag⁺, Cu²⁺, Fe²⁺, Fe³⁺, Pb²⁺, Zn²⁺, водород (H⁺), гидроксид (OH⁻), аммоний (NH₄⁺), карбонат (CO₃²⁻), нитрат (NO₃⁻), сульфат (SO₄²⁻)
        • 1:39 напишите формулы для соединений, образованных между ионами, перечисленными в 1:38
        • 1:40 начертите пунктирные диаграммы, чтобы показать образование ионных соединений путем переноса электрона, ограниченное комбинациями элементов из групп 1, 2, 3 и 5, 6, 7, необходимо показать только внешние электроны
        • 1:41 ед. Понять ионную связь с точки зрения электростатического притяжения
        • 1:42 понять, почему соединения с гигантской ионной решеткой имеют высокие точки плавления и кипения
        • 1:43 Знайте, что ионные соединения не проводят электричество в твердом состоянии, но проводят электричество при расплавлении и в водный раствор
      • (г) Ковалентная связь
        • 1:44 знайте, что ковалентная связь образуется между атомами за счет совместного использования пары электронов
        • 1:45 понимайте ковалентные связи с точки зрения электростатического притяжения
        • 1: 46 понять, как использовать точечные и перекрестные диаграммы для представления ковалентных связей в: двухатомных молекулах, включая водород, кислород, азот, галогены и галогениды водорода, неорганических молекулах, включая воду, аммиак и диоксид углерода, органических молекулах, содержащих до двух атомов углерода , включая метан, этан, этен и те, которые содержат атомы галогена
        • 1:47, объясняют, почему вещества с простой молекулярной структурой s - это газы или жидкости, или твердые вещества с низкими температурами плавления и кипения.Термин «межмолекулярные силы притяжения» может использоваться для обозначения всех сил между молекулами.
        • 1:48. Объясняет, почему точки плавления и кипения веществ с простой молекулярной структурой, как правило, увеличиваются с увеличением относительной молекулярной массы.
        • 1:49. вещества с гигантскими ковалентными структурами представляют собой твердые тела с высокими температурами плавления и кипения
        • 1:50 объясняют, как структуры алмаза, графита и фуллерена C 60 влияют на их физические свойства, включая электропроводность и твердость.
        • 1:51 знает, что ковалентный соединения обычно не проводят электричество
      • (h) Металлические связи
      • (i) Электролиз
    • 2 Неорганическая химия
      • (a) Группа 1 (щелочные металлы) - литий, натрий и калий
      • (b) Группа 7 (галогены) - хлор, бром и йод
      • (c) Газы в атмосфере
      • (d) Ряд реакционной способности
        • 2:15 понять, как металлы могут быть расположены в ряду реактивности на основе их реакций с: водой и разбавленной соляной или серной кислотой
        • 2:16 понять, как металлы могут быть расположены в ряду реактивности на основе их реакций замещения между: металлы и оксиды металлов, металлы и водные растворы солей металлов
        • 2:17 знать порядок реакционной способности этих металлов: калий, натрий, литий, кальций, магний, алюминий, цинк, железо, медь, серебро, золото
        • 2 : 18 знать условия, при которых ржавеет железо
        • 2:19 понять, как можно предотвратить ржавление железа с помощью: барьерных методов, цинкования и протекторной защиты
        • 2:20 с точки зрения увеличения или уменьшения кислорода и потери или увеличения электронов, поймите термины: окисление, восстановление, окислительно-восстановительный потенциал, окислитель, восстановитель, с точки зрения получения или потери кислорода и потери или усиления электронов
        • 2:21 на практике: исследуйте реакции между ди лютная соляная и серная кислоты и металлы (например,г. магний, цинк и железо)
      • (e) Извлечение и использование металлов
      • (f) Кислоты, щелочи и титрование
      • (g) Кислоты, основания и солевые препараты
        • 2:34 знать общие правила прогнозирования растворимость ионных соединений в воде: обычные соединения натрия, калия и аммония растворимы, все нитраты растворимы, обычные хлориды растворимы, кроме серебра и свинца (II), растворимы обычные сульфаты, кроме сульфатов бария, кальция и свинец (II), обычные карбонаты нерастворимы, за исключением натрия, калия и аммония, обычные гидроксиды нерастворимы, за исключением гидроксидов натрия, калия и кальция (гидроксид кальция слабо растворим)
        • 2:35 понять кислоты и основания с точки зрения переноса протона
        • 2:36 понимают, что кислота является донором протона, а основание - акцептором протона
        • 2:37 описывают реакции соляной кислоты, серной кислоты и азотной кислоты с металлами, основания и карбонаты металлов (исключая реакции между азотной кислотой и металлами) с образованием солей
        • 2:38 знают, что оксиды металлов, гидроксиды металлов и аммиак могут действовать как основания, а щелочи - это основания, растворимые в воде
        • 2: 39 описывают эксперимент по приготовлению чистого сухого образца растворимой соли, исходя из нерастворимого реагента
        • 2:40 (только Triple) описывают эксперимент по приготовлению чистого сухого образца растворимой соли, исходя из кислоты и щелочь
        • 2:41 (только Triple) описать эксперимент по приготовлению чистого сухого образца нерастворимой соли, исходя из двух растворимых реагентов
        • 2:42 Практически: приготовить образец чистого сухого гидратированного сульфата меди (II) кристаллы из оксида меди (II)
        • 2:43 (только тройной) Практически: приготовьте образец чистого сухого сульфата свинца (II)
      • (h) Химические испытания
        • 2: 44a описывают испытания для этих газов : водород, диоксид углерода 9000 4
        • 2:44 описывают испытания для этих газов: водород, кислород, двуокись углерода, аммиак, хлор
        • 2:45 описывают, как проводить испытание пламенем
        • 2:46 знать цвета, образующиеся при испытаниях пламенем для этих катионов: Li⁺ красный, Na⁺ желтый, K⁺ сиреневый, Ca²⁺ оранжево-красный, Cu²⁺ сине-зеленый
        • 2:47 описывают тесты на эти катионы: NH₄⁺ с использованием раствора гидроксида натрия и определение выделяющегося газа , Cu²⁺, Fe²⁺ и Fe³⁺ с использованием раствора гидроксида натрия
        • 2:48 описывают тесты для этих анионов: Cl⁻, Br⁻ и I⁻ с использованием подкисленного раствора нитрата серебра, SO₄² с использованием подкисленного раствора хлорида бария, CO₃²⁻ с использованием соляной кислоты. кислота и определение выделившегося газа
        • 2:49 описывают тест на присутствие воды с использованием безводного сульфата меди (II)
        • 2:50 описывают физический тест, чтобы показать, является ли образец воды чистой
    • 3 Физическая химия
    • 4 Органическая химия
      • (a ) Введение
      • (б) Сырая нефть
        • 4:07 знать, что сырая нефть представляет собой смесь углеводородов
        • 4:08 описывает, как промышленный процесс фракционной перегонки разделяет сырую нефть на фракции
        • 4:09 знать названия и использование основных фракций, полученных из сырой нефти: нефтеперерабатывающих газов, бензина, керосина, дизельного топлива, мазута и битума
        • 4:10 знать тенденцию изменения цвета, температуры кипения и вязкости основных фракций
        • 4:11 знать, что топливо - это вещество, которое при сгорании выделяет тепловую энергию
        • 4:12 знать возможные продукты полного и неполного сгорания углеводородов с кислородом в воздухе
        • 4:13 понять, почему окись углерода ядовита, с точки зрения ее воздействия о способности крови переносить кислород ссылки на гемоглобин не требуются
        • 4:14 знайте, что в двигателях автомобилей достигнутая температура достаточно высока, чтобы позволить азоту и кислороду из воздуха вступить в реакцию, f Создание оксидов азота
        • 4:15 объяснить, как сжигание некоторых примесей в углеводородном топливе приводит к образованию диоксида серы
        • 4:16 понять, как диоксид серы и оксиды оксидов азота способствуют возникновению кислотных дождей
        • 4:17 описать как длинноцепочечные алканы превращаются в алкены и алканы с более короткой цепью в результате каталитического крекинга (с использованием диоксида кремния или оксида алюминия в качестве катализатора и температуры в диапазоне 600-700 ° C)
        • 4:18 объясняет, почему крекинг необходим, с точки зрения баланс между спросом и предложением для различных фракций
      • (c) Алканы
      • (d) Алкены
      • (e) Спирты
        • 4:29 (только тройной) знают, что спирты содержат функциональную группу -OH
        • 4 : 30 (только Triple) понять, как рисовать структурные и отображаемые формулы для метанола, этанола, пропанола (только пропан-1-ол) и бутанола (только бутан-1-ол), и назвать каждое соединение, имена пропанол и бутанол приемлемы
        • 4:31 (только Triple) знать, что этанол может быть окислен путем: сжигания на воздухе или кислороде (полное сгорание), реакции с кислородом в воздухе с образованием этановой кислоты (микробное окисление), нагревания с дихроматом калия (VI ) в разбавленной серной кислоте с образованием этановой кислоты
        • 4:32 (только Triple) известно, что этанол можно получить путем: 1) реакции этена с паром в присутствии катализатора на основе фосфорной кислоты при температуре около 300 ° C и давлении около 60–70атм; и 2) ферментация глюкозы в отсутствие воздуха при оптимальной температуре около 30 ° C и с использованием ферментов в дрожжах
        • 4:33 (только Triple) понять причины ферментации в отсутствие воздуха и при оптимальная температура
      • (f) Карбоновые кислоты
      • (g) Сложные эфиры
      • (h) Синтетические полимеры
        • 4:44 Известно, что аддитивный полимер образуется путем соединения множества небольших молекул, называемых мономерами
        • 4:45 понять, как изобразить повторяющееся звено аддитивного полимера, включая поли (этен), поли (пропен), поли (хлорэтен) и (поли) тетрафторэтен
        • 4:46 понять, как вывести структуру мономера из повторяющегося звена аддитивного полимера и наоборот
        • 4:47 объясняют проблемы при утилизации аддитивных полимеров, в том числе: их инертность и неспособность к биологическому разложению, образование токсичных газов при их сжигании
        • 4:48 (только Triple) известно, что co конденсационная полимеризация, при которой дикарбоновая кислота реагирует с диолом, образует полиэфир и воду
        • 4:49 (только тройной) Поймите, как написать структурную и отображаемую формулу полиэфира, показывая повторяющуюся единицу, учитывая формулы мономеры, из которых он образован, включая реакцию этандиовой кислоты и этандиола:
        • 4:50 (только тройной) известно, что некоторые полиэфиры, известные как биополиграфы, биоразлагаемы
  • testMyself
  • Links
.

Оксид серебра | Солт-Лейк-Металс

Воспламеняется при контакте с серой, красным фосфором, сульфидами сурьмы и мышьяка.
Воспламеняет другие легко окисляющиеся вещества. Избегайте контакта с: хлопком, бумажными полотенцами, тряпкой, кожей, белками и т. Д.
Концентрированный, он взрывно разлагается перекисью водорода с образованием серебряного порошка и кислорода.
При растворении в аммиаке образует взрывоопасные кристаллы гремящего серебра. (Взрывоопасен даже во влажном состоянии)
• Молниеносное серебро является наиболее взрывоопасным из всех известных металлических «нитратных» взрывчатых веществ.
Как и все химические вещества, избегайте вдыхания пыли, чрезмерного контакта с кожей и носите защитные очки.
При выливании оксида серебра из бутылки мелкая пыль раздражает глаза, нос, горло и легкие.
• Будьте очень осторожны и планируйте это заранее - перед тем, как обращаться с оксидом серебра.
Если вы выдохнете на оксид серебра, он поглотит часть вашего углекислого газа с образованием карбоната серебра.
Смертельно опасен для низших форм жизни; бактерии, грибки, вирусы.
Не выбрасывайте оксид серебра в септические системы или городскую канализацию.
• Он убивает все полезные микробы, от которых зависят эти системы.
Для правильной утилизации оксида серебра:
• Добавьте 100 объемов дистиллированной воды к 1 объему порошка оксида серебра. (только стеклянная емкость)
• Добавьте обычную бытовую перекись водорода, очень медленно, при сильном перемешивании. (только стеклянная или пластиковая мешалка)
• Добавьте перекись водорода, помешивая, пока весь черный порошок не станет серым. (много пузырьков - кислород)
• Теперь вы преобразовали оксид серебра в безвредный серебряный порошок.(Вы можете оставить его себе)
ПРИМЕЧАНИЕ. Серебряный порошок также расщепляет перекись водорода, образуя пузырьки кислорода.

.

1:31 понять, как формулы простых соединений могут быть получены экспериментально, включая оксиды металлов, воду и соли, содержащие кристаллизационную воду

перейти к содержанию
  • Темы
  • Списки характеристик
  • Разделы спецификаций
    • 1 Принципы химии
      • (a) Состояния вещества
      • (b) Элементы, соединения и смеси
      • (c) Атомная структура
      • (d) Периодическая таблица
      • (e) Химические формулы, уравнения и расчеты
      • (f) Ионная связь
        • 1:37 понять, как образуются ионы в результате потери или усиления электронов
        • 1:38 узнать заряды этих ионов: металлы в группах 1, 2 и 3, неметаллы в группах 5, 6 и 7, Ag⁺, Cu²⁺, Fe²⁺, Fe³⁺, Pb²⁺, Zn²⁺, водород (H⁺), гидроксид (OH⁻), аммоний (NH₄⁺), карбонат (CO₃²⁻), нитрат (NO₃⁻), сульфат (SO₄²⁻)
        • 1:39 напишите формулы для соединений, образованных между ионами, перечисленными в 1:38
        • 1:40 начертите пунктирные диаграммы, чтобы показать образование ионных соединений путем переноса электрона, ограниченное комбинациями элементов из групп 1, 2, 3 и 5, 6, 7, необходимо показать только внешние электроны
        • 1:41 ед. Понять ионную связь с точки зрения электростатического притяжения
        • 1:42 понять, почему соединения с гигантской ионной решеткой имеют высокие точки плавления и кипения
        • 1:43 Знайте, что ионные соединения не проводят электричество в твердом состоянии, но проводят электричество при расплавлении и в водный раствор
      • (г) Ковалентная связь
        • 1:44 знайте, что ковалентная связь образуется между атомами за счет совместного использования пары электронов
        • 1:45 понимайте ковалентные связи с точки зрения электростатического притяжения
        • 1: 46 понять, как использовать точечные и перекрестные диаграммы для представления ковалентных связей в: двухатомных молекулах, включая водород, кислород, азот, галогены и галогениды водорода, неорганических молекулах, включая воду, аммиак и диоксид углерода, органических молекулах, содержащих до двух атомов углерода , включая метан, этан, этен и те, которые содержат атомы галогена
        • 1:47, объясняют, почему вещества с простой молекулярной структурой s - это газы или жидкости, или твердые вещества с низкими температурами плавления и кипения.Термин «межмолекулярные силы притяжения» может использоваться для обозначения всех сил между молекулами.
        • 1:48. Объясняет, почему точки плавления и кипения веществ с простой молекулярной структурой, как правило, увеличиваются с увеличением относительной молекулярной массы.
        • 1:49. вещества с гигантскими ковалентными структурами представляют собой твердые тела с высокими температурами плавления и кипения
        • 1:50 объясняют, как структуры алмаза, графита и фуллерена C 60 влияют на их физические свойства, включая электропроводность и твердость.
        • 1:51 знает, что ковалентный соединения обычно не проводят электричество
      • (h) Металлические связи
      • (i) Электролиз
    • 2 Неорганическая химия
      • (a) Группа 1 (щелочные металлы) - литий, натрий и калий
      • (b) Группа 7 (галогены) - хлор, бром и йод
      • (c) Газы в атмосфере
      • (d) Ряд реакционной способности
        • 2:15 понять, как металлы могут быть расположены в ряду реактивности на основе их реакций с: водой и разбавленной соляной или серной кислотой
        • 2:16 понять, как металлы могут быть расположены в ряду реактивности на основе их реакций замещения между: металлы и оксиды металлов, металлы и водные растворы солей металлов
        • 2:17 знать порядок реакционной способности этих металлов: калий, натрий, литий, кальций, магний, алюминий, цинк, железо, медь, серебро, золото
        • 2 : 18 знать условия, при которых ржавеет железо
        • 2:19 понять, как можно предотвратить ржавление железа с помощью: барьерных методов, цинкования и протекторной защиты
        • 2:20 с точки зрения увеличения или уменьшения кислорода и потери или увеличения электронов, поймите термины: окисление, восстановление, окислительно-восстановительный потенциал, окислитель, восстановитель, с точки зрения получения или потери кислорода и потери или усиления электронов
        • 2:21 на практике: исследуйте реакции между ди лютная соляная и серная кислоты и металлы (например,г. магний, цинк и железо)
      • (e) Извлечение и использование металлов
      • (f) Кислоты, щелочи и титрование
      • (g) Кислоты, основания и солевые препараты
        • 2:34 знать общие правила прогнозирования растворимость ионных соединений в воде: обычные соединения натрия, калия и аммония растворимы, все нитраты растворимы, обычные хлориды растворимы, кроме серебра и свинца (II), растворимы обычные сульфаты, кроме сульфатов бария, кальция и свинец (II), обычные карбонаты нерастворимы, за исключением натрия, калия и аммония, обычные гидроксиды нерастворимы, за исключением гидроксидов натрия, калия и кальция (гидроксид кальция слабо растворим)
        • 2:35 понять кислоты и основания с точки зрения переноса протона
        • 2:36 понимают, что кислота является донором протона, а основание - акцептором протона
        • 2:37 описывают реакции соляной кислоты, серной кислоты и азотной кислоты с металлами, основания и карбонаты металлов (исключая реакции между азотной кислотой и металлами) с образованием солей
        • 2:38 знают, что оксиды металлов, гидроксиды металлов и аммиак могут действовать как основания, а щелочи - это основания, растворимые в воде
        • 2: 39 описывают эксперимент по приготовлению чистого сухого образца растворимой соли, исходя из нерастворимого реагента
        • 2:40 (только Triple) описывают эксперимент по приготовлению чистого сухого образца растворимой соли, исходя из кислоты и щелочь
        • 2:41 (только Triple) описать эксперимент по приготовлению чистого сухого образца нерастворимой соли, исходя из двух растворимых реагентов
        • 2:42 Практически: приготовить образец чистого сухого гидратированного сульфата меди (II) кристаллы из оксида меди (II)
        • 2:43 (только тройной) Практически: приготовьте образец чистого сухого сульфата свинца (II)
      • (h) Химические испытания
        • 2: 44a описывают испытания для этих газов : водород, диоксид углерода 9000 4
        • 2:44 описывают испытания для этих газов: водород, кислород, двуокись углерода, аммиак, хлор
        • 2:45 описывают, как проводить испытание пламенем
        • 2:46 знать цвета, образующиеся при испытаниях пламенем для этих катионов: Li⁺ красный, Na⁺ желтый, K⁺ сиреневый, Ca²⁺ оранжево-красный, Cu²⁺ сине-зеленый
        • 2:47 описывают тесты на эти катионы: NH₄⁺ с использованием раствора гидроксида натрия и определение выделяющегося газа , Cu²⁺, Fe²⁺ и Fe³⁺ с использованием раствора гидроксида натрия
        • 2:48 описывают тесты для этих анионов: Cl⁻, Br⁻ и I⁻ с использованием подкисленного раствора нитрата серебра, SO₄² с использованием подкисленного раствора хлорида бария, CO₃²⁻ с использованием соляной кислоты. кислота и определение выделившегося газа
        • 2:49 описывают тест на присутствие воды с использованием безводного сульфата меди (II)
        • 2:50 описывают физический тест, чтобы показать, является ли образец воды чистой
    • 3 Физическая химия
    • 4 Органическая химия
      • (a ) Введение
      • (б) Сырая нефть
        • 4:07 знать, что сырая нефть представляет собой смесь углеводородов
        • 4:08 описывает, как промышленный процесс фракционной перегонки разделяет сырую нефть на фракции
        • 4:09 знать названия и использование основных фракций, полученных из сырой нефти: нефтеперерабатывающих газов, бензина, керосина, дизельного топлива, мазута и битума
        • 4:10 знать тенденцию изменения цвета, температуры кипения и вязкости основных фракций
        • 4:11 знать, что топливо - это вещество, которое при сгорании выделяет тепловую энергию
        • 4:12 знать возможные продукты полного и неполного сгорания углеводородов с кислородом в воздухе
        • 4:13 понять, почему окись углерода ядовита, с точки зрения ее воздействия о способности крови переносить кислород ссылки на гемоглобин не требуются
        • 4:14 знайте, что в двигателях автомобилей достигнутая температура достаточно высока, чтобы позволить азоту и кислороду из воздуха вступить в реакцию, f Создание оксидов азота
        • 4:15 объяснить, как сжигание некоторых примесей в углеводородном топливе приводит к образованию диоксида серы
        • 4:16 понять, как диоксид серы и оксиды оксидов азота способствуют возникновению кислотных дождей
        • 4:17 описать как длинноцепочечные алканы превращаются в алкены и алканы с более короткой цепью в результате каталитического крекинга (с использованием диоксида кремния или оксида алюминия в качестве катализатора и температуры в диапазоне 600-700 ° C)
        • 4:18 объясняет, почему крекинг необходим, с точки зрения баланс между спросом и предложением для различных фракций
      • (c) Алканы
      • (d) Алкены
      • (e) Спирты
        • 4:29 (только тройной) знают, что спирты содержат функциональную группу -OH
        • 4 : 30 (только Triple) понять, как рисовать структурные и отображаемые формулы для метанола, этанола, пропанола (только пропан-1-ол) и бутанола (только бутан-1-ол), и назвать каждое соединение, имена пропанол и бутанол приемлемы
        • 4:31 (только Triple) знать, что этанол может быть окислен путем: сжигания на воздухе или кислороде (полное сгорание), реакции с кислородом в воздухе с образованием этановой кислоты (микробное окисление), нагревания с дихроматом калия (VI ) в разбавленной серной кислоте с образованием этановой кислоты
        • 4:32 (только Triple) известно, что этанол можно получить путем: 1) реакции этена с паром в присутствии катализатора на основе фосфорной кислоты при температуре около 300 ° C и давлении около 60–70атм; и 2) ферментация глюкозы в отсутствие воздуха при оптимальной температуре около 30 ° C и с использованием ферментов в дрожжах
        • 4:33 (только Triple) понять причины ферментации в отсутствие воздуха и при оптимальная температура
      • (f) Карбоновые кислоты
      • (g) Сложные эфиры
      • (h) Синтетические полимеры
        • 4:44 Известно, что аддитивный полимер образуется путем соединения множества небольших молекул, называемых мономерами
        • 4:45 понять, как изобразить повторяющееся звено аддитивного полимера, включая поли (этен), поли (пропен), поли (хлорэтен) и (поли) тетрафторэтен
        • 4:46 понять, как вывести структуру мономера из повторяющегося звена аддитивного полимера и наоборот
        • 4:47 объясняют проблемы при утилизации аддитивных полимеров, в том числе: их инертность и неспособность к биологическому разложению, образование токсичных газов при их сжигании
        • 4:48 (только Triple) известно, что co конденсационная полимеризация, при которой дикарбоновая кислота реагирует с диолом, образует полиэфир и воду
        • 4:49 (только тройной) Поймите, как написать структурную и отображаемую формулу полиэфира, показывая повторяющуюся единицу, учитывая формулы мономеры, из которых он образован, включая реакцию этандиовой кислоты и этандиола:
        • 4:50 (только тройной) известно, что некоторые полиэфиры, известные как биополиграфы, биоразлагаемы
  • testMyself
  • Links
.

Смотрите также