Из чего сделан карбюратор металл


Из какого металла сделан карбюратор?

Существует три основных материала, из которых изготовлены карбюраторы: чугун, цинк и алюминий. Начиная с 30-х годов, чугун начал заменяться цинком, а в конце 50-х годов алюминий заменил много (но не весь) цинк.
В большинстве случаев чугун завершается черным оксидом, хотя его иногда окрашивают в черный цвет. Картер рекомендовал специальную черную карбюраторную краску при восстановлении карбюратора. Таким образом, в то время как углеводы, такие как W-1 Carter, изначально были обработаны черным оксидом, многие из них теперь — правильно — полуглянцевые черные.
Карбон Рочестера также использовал чугун в секции корпуса дроссельной заслонки. Эта часть всегда была оксидом черного, и рекомендации по изготовлению красок не проводились.
Самый известный карбюраторный материал — оливково-зеленый цвет цинка. Сам цинк представляет собой яркий серебристый металл, который реагирует с воздухом и водой, чтобы получить порошкообразный белый материал, который часто называют «белой ржавчиной». Чтобы предотвратить это, части карбюратора обрабатываются на заводе раствором хромовой кислоты, который образует тонкий слой «хроматина цинка» на поверхности металла. Это очень эффективно защищает металл от повреждения водой или воздухом. Вот почему карбюраторы обычно зеленые!

>Из какого материала изготовлены карбюраторы? Из какого металла сделан карбюратор

Карбюраторы цинковые — Справочник химика 21

    Цинк является анодным по отношению к большинству обычно применяемых металлов и теоретически должен защищать их при соприкосновении. Некоторые данные практики этс подтверждают, но при этом следует учитывать соотношение поверхностей анода и катода. Например, карбюраторы (цинковое литье под давлением), снабженные латунными вкладышами, практически не корродируют даже в присутствии воды, так как в этом случае катодная поверхность значительно меньше поверхности анода. Если же в конструкции имеет место обратное явление, т. е. небольшая цинковая деталь соприкасается с большой поверхностью электроположительного (более благородного) металла, коррозия цинка неминуема.      Растворимость продуктов коррозии в бензине зависит от молекулярного веса кислоты. С увеличением его растворимость солей в бензине улучшается. Нерастворимые продукты коррозии отлагаются на стенках тары или находятся во взвешенном состоянии. В последнем случае, поступая вместе с бензином, они способны забить фильтры или жиклеры карбюратора и тем самым вызвать перебои в работе двигателя . 

    Литье цинка, свинца, олова. Масштабы литья изделий из этих металлов обычно незначительны. Из сплавов олова, свинца и сурьмы отливают полиграфические шрифты, из цинковых сплавов — детали автомобильных двигателей (корпуса карбюраторов, насосов, фильтров). Для литья в основном используют плавильные тигли с электрическим или косвенным газовым обогревом. Иногда в городах, находящихся в зоне действия магистрального газопровода, вместо электрического обогрева или обогрева жидким топливом используют обогрев газовым топливом, которое позволяет более точно управлять температурным режимом и облегчать операции пуска и выключения печи. 

    Испытания в водном слое смеси бензина с водой (условия работы карбюратора или бензобака) показали для прокатанного цинка с хроматной пленкой потерю веса всего только в 0,0027 г, а для прокатанного цинка без пленки при тех же размерах образцов и равных условиях — 0,2691 г. В течение многих лет хроматные пленки успешно применяются для защиты против коррозии поплавков для карбюраторов, отлитых из цинкового сплава под давлением, а также бензобаков, оцинкование которых осуществляется обычно горячим способом. 

    Увеличение концентрации кислорода в воде повышает скорость коррозии цинка Стабл. 2). При высоком содержании кислорода коррозия обычно протекает равномерно. Однако, когда концентрация кислорода падает ниже определенного предела и вода становится неравномерно насыщенной, между участками, богатыми кислородом, и участками, бедными кислородом, образуются гальванопары, в результате чего цинк подвергается действию точечной коррозии при этом скорость разъедания увеличивается и образуются объемистые продукты коррозии. На практике типичные случаи такой коррозии можно наблюдать на карбюраторах из цинковых сплавов в местах застоя воды под бензином или на сложенных в кипу цинковых или оцинкованных стальных листах при попадании в промежутки между ними влаги. 

Корпус двухкамерного карбюратора с центральным расположением поршневого ускорительного насоса

Полезная модель относится к машиностроению, в частности, к корпусам карбюраторов двигателей внутреннего сгорания, изготавливаемых литьем под давлением. Полезная модель позволяет снизить брак при отливке корпусов и обеспечить более устойчивую работу двигателя при боковых кренах автомобиля. Корпус двухкамерного карбюратора с центральным расположением полости поршневого ускорительного насоса, размещенной между двумя вертикальными полостями главных воздушных трактов имеет сектор в центральной части перегородки, отделяющей поплавковую камеру от полостей главных воздушных трактов. Дуга сектора выступает вовнутрь поплавковой камеры и образована сопряжением внешних боковых стенок отверстий эмульсионных колодцев, отверстия для направляющей привода ускорительного насоса, отверстия для установки клапана экономайзера и размещения направляющей штока экономайзера. Расстояние L1 между центрами эмульсионных колодцев находится в диапазоне 0,7LL1L, где L — расстояние между центрами полостей главных воздушных трактов. При использовании корпуса карбюратора в соответствии с полезной моделью, при литье корпусов выполненных в соответствии с настоящей полезной моделью, удалось снизить внутренний заводской брак при изготовлении корпусов карбюратора типа К126-К135 на 15%. В тоже время, были повышены потребительские качества автомобилей с карбюраторами типа К126-К135, за счет повышения устойчивости работы двигателя при боковых наклонах автомобиля. (1 н.п.ф., 2 з.п.ф., 3 фиг.).

Полезная модель относится к машиностроению, в частности, к корпусам карбюраторов двигателей внутреннего сгорания, изготавливаемых литьем под давлением.

Корпус карбюратора является изделием сложной формы, имеющим стенки и перегородки существенно различной толщины. Корпуса карбюраторов изготавливаются из различных сплавов цветных металлов, например ЦАМ4-1 на основе цинка или АК12М2 на основе алюминия. При изготовлении корпусов карбюратора методом литья под давлением скорость кристаллизации тонких и массивных частей отливок различна, поэтому они имеют различное кристаллическое строение, что в свою очередь ведет к образованию газовоздушной и усадочной пористости, образованию раковин, приводящих к потере герметичности корпуса карбюратора.

Известен корпус поплавковой камеры двухкамерного карбюратора (Карбюраторы К-126, К-135, ГАЗ, ПАЗ. Принцип действия, устройство, регулировка, ремонт. Тихомиров А.Н., «КОЛЕСО», Москва, 64, 2002 г.), выполненный методом литья под давлением, имеющий две вертикальные полости главных воздушных трактов, с примыкающей общей поплавковой камерой, отделенной от них перегородкой.

Компоновочное решение корпуса карбюратора предполагает размещение в перегородке карбюратора ускорительного насоса, включая рабочую полость насоса, отверстия для направляющей привода ускорительного насоса, отверстия для установки клапана экономайзера и размещения направляющей штока экономайзера. Кроме того, в перегородке, отделяющей полости главных воздушных трактов от поплавковой камеры, размещаются отверстия для двух эмульсионных колодцев. При такой компоновке в корпусе карбюратора образуется массивная толстая перегородка, отдельные части которой имеют существенно разную толщину, создавая в центре перегородки тепловой узел, что может приводить к образованию пор и раковин в перегородке, к потере герметичности и увеличению брака при литье корпусов карбюраторов. В ходе эксплуатации карбюраторов данных моделей были выявлены проблемы функционирования главных дозирующих систем при их расположении ближе к краям поплавковой камеры, связанные с нарушением топливоподачи при боковых кренах автомобиля, вызывающих сбои в работе двигателя.

Задача, решаемая предлагаемой полезной моделью, заключается в создании корпуса для двухкамерных карбюраторов с центральным расположением поршневого ускорительного насоса лишенного вышеуказанных недостатков, а именно снижении брака при отливке корпусов и обеспечении непрерывной работы двигателя при больших боковых кренах автомобиля.

Указанный технический результат достигается тем, что корпус двухкамерного карбюратора выполнен с центральным расположением полости поршневого ускорительного насоса, размещенной между двумя вертикальными полостями главных воздушных трактов, и примыкающей к ним со стороны ускорительного насоса поплавковой камерой преимущественно прямоугольной формы. В перегородке, отделяющей полости главных воздушных трактов от поплавковой камеры расположены отверстия для двух эмульсионных колодцев, отверстие для направляющей привода ускорительного насоса, сообщающееся с поплавковой камерой отверстие, предназначенное для установки клапана экономайзера и размещения направляющей штока экономайзера. В соответствии с полезной моделью в центральной части перегородки, отделяющей поплавковую камеру от полостей главных воздушных трактов, имеется сектор, дуга которого выступает вовнутрь поплавковой камеры и образована сопряжением внешних боковых стенок отверстий эмульсионных колодцев, отверстия для направляющей привода ускорительного насоса, отверстия предназначенного для установки клапана экономайзера и размещения направляющей штока экономайзера. Расстояние L1 между центрами эмульсионных колодцев находится в диапазоне:

0,7LL1L, где

L — расстояние между центрами полостей главных воздушных трактов;

L1 — расстояние между центрами эмульсионных колодцев. Предпочтительно в выступающей во внутрь поплавковой камеры боковой части стенки отверстия, предназначенного для установки клапана экономайзера и размещения направляющей штока экономайзера выполнять продольный прямоугольный вырез обеспечивающий попадание топлива из поплавковой камеры в отверстие клапана экономайзера. Такая форма выреза проста для литья, при этом дополнительно снижается толщина перегородки.

Кроме того, перегородка, отделяющая поплавковую камеру от полостей главных воздушных трактов, может иметь по меньшей мере, одно отверстие, примыкающее к сектору и сопряженное с боковой стенкой отверстия эмульсионного колодца. Такое конструктивное решение позволяет выполнять в карбюраторе дополнительные системы, например канал эконостата, без изменения компоновки карбюратора и существенного увеличения толщины перегородки, влияющей на выход годных корпусов.

Благодаря равномерному распределению отверстий эмульсионных колодцев, отверстия для направляющей привода ускорительного насоса и отверстия для установки клапана экономайзера с направляющей поверхностью для его привода по сектору вокруг рабочей полости ускорительного насоса, снижается разница между толщинами отдельных частей перегородки, что обеспечивает более равномерное распределение массы сплава по всему объему сектора перегородки и уменьшает вероятность образования пор и раковин.

Форма исполнения дуги сектора, в виде сопряжения стенок вышеуказанных отверстий, выступающих во внутрь поплавковой камеры, позволят уменьшить массу выступающего во внутрь поплавковой камеры сектора перегородки. Кроме того, за счет использования сектора, уменьшается масса приливов по углам поплавковой камеры, где происходит сопряжение перегородки с корпусом.

Расстояние L1 между центрами эмульсионных колодцев, выбранное в соответствии с вышеуказанным диапазоном, обеспечивает оптимальное выполнение поставленной задачи. Расположение центров эмульсионных колодцев на расстояниях L1 меньших, чем расстояние L между центрами полостей главных воздушных трактов, позволяет уменьшить длину дуги сектора и соответственно площадь сектора, массу и толщину перегородки в центре карбюратора, что позволяет существенно уменьшить размер теплового узла и снизить процент брака от образования пор и раковин. Расстояние L 1 между центрами эмульсионных колодцев не может быть меньше величины указанной в диапазоне, так как в этом случае толщина стенок отверстий, образующих дугу сектора, в местах с их сопряжении между собой, станет настолько малой, что это приведет к увеличению брака и снижению выхода годных корпусов за счет образования неслитин и утяжин.

Размещение отверстий эмульсионных колодцев в секторе перегородки корпуса, ближе к центру корпуса карбюратора, обеспечивает более устойчивую работу двигателя при больших боковых наклонах автомобиля, так как при таком расположении снижается относительная величина изменения уровня топлива в эмульсионном колодце, в зависимости от угла бокового наклона двигателя, с установленным на нем карбюратором, ось N которого ориентирована в направлении движения автомобиля, что ведет к прекращению поступления топлива в двигатель.

На фиг.1 изображен вид сверху корпуса карбюратора типа К 135.

На фиг.2. изображен аксонометрический вид разреза А-А корпуса карбюратора типа 135.

На фиг.3 изображен вид сверху корпуса карбюратора типа К126 со вспомогательными отверстиями.

В примере 1 представлена конструкция корпуса карбюратора типа К135 (фиг1.). Корпус 1 поплавковой камеры двухкамерного карбюратора имеет полость 2 для размещения поршня (не показан) ускорительного насоса, расположенную в центре корпуса 1 на оси симметрии N, между полостями 3 главных воздушных трактов (см. фиг.1). Корпус 1 имеет поплавковую камеру 4 преимущественно прямоугольной формы, отделенную перегородкой 5 от полостей 3 главных воздушных трактов. Со стороны поплавковой камеры 4 вокруг полости ускорительного насоса 2 расположены отверстия для двух эмульсионных колодцев 6, отверстие 7 для направляющей (не показана) привода ускорительного насоса, отверстие 8, предназначенное для установки клапана экономайзера (не показан) и размещения направляющей штока привода экономайзера. Перегородка 5 имеет сектор «С», в который сблокированы отверстия 6, 7, 8 с центром, лежащим на оси корпуса N, дуга которого выступает вовнутрь поплавковой камеры 4. Отверстие 8 для установки клапана экономайзера и размещения направляющей штока экономайзера имеет продольный прямоугольный вырез в боковой поверхности с помощью которого топливо поступает из поплавковой камеры в клапан экономайзера (фиг.2). Центры эмульсионных колодцев 6, расположены на концах дуги сектора «С», симметрично относительно оси корпуса N. Расстояние L1 между центрами эмульсионных колодцев 6 меньше расстояния L между центрами главных воздушных трактов 3 на 17%.

В примере 2 представлена конструкция корпуса карбюратора тип К-126 (фиг.3). Корпус 1 поплавковой камеры двухкамерного карбюратора выполняют, как указано выше в примере 1. В перегородке 5 выполнено отверстие 9 для канала эконостата и отверстие 10, являющееся резервным.

Корпус карбюратора изготавливаемый в соответствии с настоящей полезной моделью предназначен для использования в карбюраторах К126Н, К126Г, К126И, К126М К135, К135МУ, К135Г, предназначенных для подготовки качественной топливовоздушной смеси для двигателей внутреннего сгорания легковых и грузовых автомобилей. Размещение эмульсионных колодцев ближе к центру карбюратора, позволяет выполнять требования, предъявляемые к работоспособности двигателя при боковых кренах автомобиля.

Изготовление корпуса двухкамерного карбюратора заключается в подаче расплавленного металла в пресс-форму под избыточным давлением, в следующей последовательности: в прессовый стакан заливают расплавленный металл, включают механизм запрессовки и поршень вытесняет металл в полость формы. После заливки в форму металл выдерживается установленное время, после чего пресс-форма раскрывается и из нее выталкивается готовая отливка корпуса карбюратора. Для повышения плотности отливки, уменьшения газовоздушной пористости дополнительно применяют такой режим технологического процесса, при котором осуществляется передача статического давления на металл от момента окончательного заполнения формы до полного затвердевания. В условиях быстрого затвердевания важным условием осуществления подпрессовки является создание таких тепловых условий, при которых металл одновременно затвердевает во всех частях формы, что зависит от разницы толщин стенок и перегородок в различных частях корпуса. Конструкция корпуса карбюратора в соответствии с заявляемой полезной моделью позволяет уменьшить эту разницу, обеспечив создание герметичной отливки с мелкозернистой структурой и высокими механическими свойствами.

Таким образом, при литье корпусов выполненных в соответствии с настоящей полезной моделью, удалось снизить внутренний заводской брак при изготовлении корпусов карбюратора типа К126-К135 на 15%. В тоже время, были повышены потребительские качества автомобилей с.карбюраторами типа К126-К135, за счет повышения устойчивости работы двигателя при боковых наклонах автомобиля.

1. Корпус двухкамерного карбюратора с центральным расположением полости поршневого ускорительного насоса, размещенной между двумя вертикальными полостями главных воздушных трактов и примыкающей к ним со стороны ускорительного насоса поплавковой камерой преимущественно прямоугольной формы, при этом в перегородке, отделяющей полости главных воздушных трактов от поплавковой камеры, расположены отверстия для двух эмульсионных колодцев, отверстие для направляющей привода ускорительного насоса, сообщающееся с поплавковой камерой отверстие, предназначенное для установки клапана экономайзера и размещения направляющей штока экономайзера, отличающийся тем, что в центральной части перегородки, отделяющей поплавковую камеру от полостей главных воздушных трактов, имеется сектор, дуга которого выступает вовнутрь поплавковой камеры и образована сопряжением внешних боковых стенок отверстий эмульсионных колодцев, отверстия для направляющей привода ускорительного насоса, отверстия, предназначенного для установки клапана экономайзера и размещения направляющей штока экономайзера, а расстояние L1 между центрами эмульсионных колодцев находится в диапазоне:

0,7LL1L,

где L — расстояние между центрами полостей главных воздушных трактов;

L1 — расстояние между центрами эмульсионных колодцев.

2. Корпус карбюратора с центральным расположением полости поршневого ускорительного насоса по п.1, отличающийся тем, что выступающая во внутрь поплавковой камеры боковая часть стенки отверстия, предназначенного для установки клапана экономайзера и размещения направляющей штока экономайзера, имеет продольный прямоугольный вырез.

3. Корпус карбюратора с центральным расположением полости поршневого ускорительного насоса по п.1, отличающийся тем, что в перегородке, отделяющей поплавковую камеру от полостей главных воздушных трактов, имеется, по меньшей мере, одно отверстие, примыкающее к сектору и сопряженное с боковой стенкой отверстия эмульсионного колодца.

Автомобильный карбюратор — Большая Энциклопедия Нефти и Газа, статья, страница 1

Автомобильный карбюратор

Cтраница 1

Автомобильные карбюраторы имеют одну, две или четыре смесительных камеры. Многокамерные карбюраторы бывают с одновременным или последовательным открытием дроссельных заслонок.  

Диаметры жиклеров автомобильных карбюраторов невелики ( 0 6 — f — 4 — 2 5 мм), поэтому определить коэффициенты скорости и сжатия струи порознь для таких небольших отверстий затруднительно.  

Для Исключения влияния воздухоочистителя на качество смеси у большинства современных автомобильных карбюраторов поплавковая камера герметизируется и сообщается каналом с полостью приемного патрубка.  

Примером функциональной взаимозаменяемости может служить методика определения допусков на размеры калиброванных каналов жиклеров автомобильных карбюраторов, разработанная проф.  

Мотоциклетные двигатели имеют ряд особенностей, вследствие чего их карбюраторы значительно отличаются от автомобильных карбюраторов.  

Сплавы цинка с медью, алюминием и магнием обычно применяют для изготовления деталей, работающих в условиях трения. Цинковые сплавы используют для изготовления деталей автомобильных карбюраторов, бензонасосов, стеклоочистителей, а также электротехнических приборов.  

Этот же принцип используется и в более совершенных насосах, рассматриваемых в молекулярной физике. На том же принципе работают пульверизатор ( рис. 10.13) и автомобильный карбюратор. Но в них струя газа увлекает жидкость, последняя при этом разбивается на мелкие капельки.  

Например, общие расходы на стержни из молибденового сплава, применяемые в машинах для литья под давлением алюминия, после 60 000 — 80 000 отливок примерно в 6 раз меньше, чем из стальных стержней. Стержни из сплава TZM после получения более 100 000 отливок корпуса автомобильного карбюратора из алюминиевого сплава сохраняют первоначальную форму и удовлетворительную чистоту поверхности.  

При колебании расхода топлива при эксплуатационном напоре, равном 100 см, и температуре 20 С на величину AQ 0 05 см / сек, допуск на диаметр жиклера d 0 88 мм должен быть равен 5 мк. Он найден из уравнения, связывающего расход жидкости с геометрическими и эксплуатационными параметрами жиклеров автомобильных карбюраторов.  

Следует отметить, что при малых нагрузках в подаче воды нет необходимости, и она не подается ввиду отсутствия перепада давлений в поплавковой камере и канале 18, выходящем во всасывающий патрубок карбюратора. На холостом ходу питание двигателя осуществляется через систему каналов жиклера холостого хода, мало отличающихся от имеющихся на автомобильных карбюраторах.  

Корпус 7 карбюратора представляет собой отливку из цинкового или алюминиевого сплава с двумя большими отверстиями, оси которых взаимно перпендикулярны. Нижнее положение золотника определяет минимальное устойчивое число оборотов двигателя на холостом ходу и регулируется специальным винтом. В некоторых карбюраторах иногда имеется дополнительный золотник 2, выполняющий те же функции, что и воздушная заслонка в автомобильном карбюраторе. С дроссельным золотником связана регулировочная игла 11, конец которой, имеющий строго определенный профиль, входит в отверстие распылителя 10 главного жиклера.  

Наименьший измеряемый расход равен 0 05 кг / ч, или 0 014 г / с. Динамические свойства моста высокие. Его постоянная времени составляет 5 — 15 мс. Он с успехом был применен для исследования работы автомобильного карбюратора.  

Наиболее важными вопросами методики предметизации являются: применение широких и узких рубрик, инверсия в их формулировке, использование подрубрик. Предметная рубрика должна возможно точнее определять конкретное содержание документов. Так, например, если в нем трактуется об автомобильных карбюраторах, то рубрика должна формулироваться Карбюраторы, а не Двигатели внутреннего сгорания или Автомобили. Применение широких рубрик оправданно лишь в тех случаях, когда речь идет о соответствующем широком содержании, например, когда в документе говорится о двигателях внутреннего сгорания или автомобилях в целом.  

Страницы:      1    2

Цинковый сплав (?)

13mm 08-05-2008 17:51

перемещено из Мастерская

Кто-нибудь из вас знает марку сплава в отечественных карбюраторах?Годится он для отливки рукояток и кастетов?Va-78 08-05-2008 19:10

Охота вам травиться да статью поднимать на ровном месте…

Truddum 08-05-2008 19:43

Кастет не люблю. Подлое оружие.

serge-vv 08-05-2008 20:26

имеется излишек карбюраторов? или наблюдается недостаток аккумуляторов?…

boroda Kostroma 08-05-2008 22:05

пардон наблюдается недостаток мозгов прости если правду сказал

Lesnoi 94 08-05-2008 22:14

Попробуй в неклинковом спросить:http://guns.allzip.org/forum/119/

перемещено из МастерскаяСтасег 12-05-2008 23:39

При расплавлении кусков карбюратора начнет активно выгорать Цинк, из этого сплава льют под давлением и при соблюдении определенных условий плавки(уголь толченый сверху и еще какаято хрень)Лейте уж лучше из припоя ПОССу без канифоли, и то лучше получится

Silent_ASSASIN 13-05-2008 13:10

У меня такой сплав есть смесь цинкак с оловом (если это то)

13mm 15-05-2008 15:03quote:Originally posted by boroda Kostroma:пардон наблюдается недостаток мозгов прости если правду сказал Судя по твоиму и предыдущим постам — так и есть!Чего ради ты сюда серанул, задрот?Ум или образованость показать?quote:Originally posted by Стасег:При расплавлении кусков карбюратора начнет активно выгорать Цинк, из этого сплава льют под давлением и при соблюдении определенных условий плавки(уголь толченый сверху и еще какаято хрень)Лейте уж лучше из припоя ПОССу без канифоли, и то лучше получится Свинцовые сплавы — пачкают все и легко царапаются, а цинковый вроде бы и тяжелый, и твердый, и хорошо литься должен, и выглядит симпатично.13mm 16-05-2008 10:49quote:Originally posted by Стасег: http://www.mto.nnov.ru/zinc.htmlC этим я уже ознакомился, потому и спрашиваю какой марки сплав в карбюраторах.Стасег 16-05-2008 14:52

Не морочтесь с карбюраторами, все уже придумано до нас и статьи в УК за это нетуНаписал в РМ

Hunt11 28-05-2008 13:07quote:Originally posted by Стасег:Не морочтесь с карбюраторами, все уже придумано до нас и статьи в УК за это нетуНаписал в РМ

Тогда и мне в ПМ, плиз…

Ааз 05-07-2008 05:50

И я б услышал…

Avi 05-07-2008 22:08

И я ^_^

moby_one 30-07-2008 22:38quote:Originally posted by 13mm:Свинцовые сплавы — пачкают все и легко царапаются, а цинковый вроде бы и тяжелый, и твердый, и хорошо литься должен, и выглядит симпатично.

цинк окисляется в виде белого налета.

popov_24 08-08-2008 04:01

да там силумин. его на плите не расплавиш. и как свинец не отольеш. нужно оборудование под аргон и т.д. луче точить из листового алюминия.

  • Как чистить карбюратор ваз 2106
  • 9 цивик
  • Замена на задних тормозов на дисковые
  • Проверить номер двигателя
  • Что такое контрактный двигатель из японии
  • Плотность солярки летней
  • Износ резины с внутренней стороны
  • Двигатель на водородном топливе
  • Для чего нужны поршневые кольца
  • Где производят киа оптима для россии
  • Установка на уаз подогревателя двигателя 220в на

Как работает карбюратор?

Криса Вудфорда. Последнее изменение: 17 января 2020 г.

Топливо плюс воздух равны движению - это фундаментальная наука, лежащая в основе большинства транспортных средств. которые путешествуют по суше, морю или небу. Легковые автомобили, грузовики и автобусы превращают топливо в энергию, смешивая его с воздухом и сжигая металлические цилиндры внутри их двигателей. Сколько именно топлива и воздуха потребность двигателя меняется от момента к моменту, в зависимости от того, как долго он работает, как быстро вы идете, и множество других факторы.В современных двигателях используется система электронного управления. называется впрыск топлива для регулирования топливно-воздушной смеси, чтобы ровно с минуты поворота ключа до момента переключения двигатель снова выключится, когда вы достигнете места назначения. Но пока эти были изобретены умные устройства, практически все двигатели полагались на гениальные устройства для смешивания воздуха и топлива, называемые карбюраторами , (пишется «карбюратор» в некоторых странах и часто сокращается до просто «карбюратор»). Что они собой представляют и как работают? Рассмотрим подробнее!

Иллюстрация: Карбюраторы в двух словах: они добавляют топливо (красный) к воздуху (синий), чтобы получилась смесь, подходящая для горения в цилиндрах.Цилиндры современных автомобилей более эффективно питаются от систем впрыска топлива, которые потребляют меньше топлива и меньше загрязняют окружающую среду. Но вы по-прежнему найдете карбюраторы в двигателях старых автомобилей и мотоциклов, а также в компактных двигателях газонокосилок и бензопил.

Как двигатели сжигают топливо

Двигатели - вещи механические, но они тоже химические вещи: они разработан на основе химической реакции под названием горение : когда вы сжигаете топливо в воздухе, вы выделяете тепловую энергию и производите углерод диоксид и вода как отходы.Чтобы эффективно сжигать топливо, вы нужно использовать много воздуха. Это относится и к автомобильному двигателю. что касается свечи, костра на открытом воздухе, угля или дрова в чьем-то доме.

С костром вам никогда не придется беспокоиться о том, что у вас слишком много или слишком мало воздуха. При пожарах внутри помещений запас воздуха сокращается и гораздо важнее. Недостаток кислорода вызовет пожар в помещении (или даже устройство для сжигания топлива, такое как газовая печь центрального отопления (котел), чтобы производить опасные загрязнения воздуха, в том числе токсичные угарный газ.

Иллюстрации: Теоретически двигателю автомобиля требуется в 14,7 раз больше воздуха, чем топлива, если воздушно-топливная смесь должна гореть должным образом. Это называется стехиометрической смесью, и она состоит из 94 процентов воздуха и 6 процентов топлива. На практике соотношение может быть другим.

С автомобильным двигателем все немного сложнее. Если у тебя есть достаточно атомов кислорода, чтобы сжечь все ваши атомы топлива, это называется стехиометрическая смесь . (Стехиометрия - это часть химии, эквивалент в аптеке, чтобы убедиться, что у вас ровно достаточно каждого ингредиента прежде чем приступить к приготовлению пищи по рецепту.) В случае автомобильного двигателя соотношение обычно составляет около 14,7 частей воздуха на 1 часть топлива (хотя это действительно зависит от того, из чего состоит топливо). Слишком много воздуха и недостаточно топлива означает, что двигатель горит "обедненная смесь" при слишком большом количестве топлива и недостатке воздуха называется горящий «богатый». Слишком много воздуха (слегка бедная смесь) дает лучшую экономию топлива, а немного слишком мало (слегка богатая смесь) дает лучшие характеристики. Слишком много воздуха так же плохо, как и слишком много воздуха. немного; оба по-разному вредны для двигателя.

Что такое карбюратор?

«Карбюратор называют« сердцем »автомобиля, и нельзя ожидать, что двигатель будет работать правильно, выдавать надлежащую мощность или работать плавно, если его« сердце »не выполняет свои функции должным образом».

Эдвард Кэмерон, The New York Times, 1910

Бензиновые двигатели

рассчитаны на то, чтобы всасывать точно необходимое количество воздуха, поэтому топливо горит нормально, запускается ли двигатель с холодного или нагревается на максимальной скорости.Получение правильной топливно-воздушной смеси - это работа умного механического устройства под названием карбюратор : трубка, которая пропускает воздух и топливо в двигатель через клапаны, смешивая их вместе в разных количествах, чтобы удовлетворить широкий спектр различных условия вождения.

Кто изобрел карбюратор?

Карбюраторы используются с конца 19 века. века, когда они были впервые разработаны пионером автомобилестроения (и Основатель Mercedes) Карл Бенц (1844–1929).

На этой диаграмме, которую я раскрасил для облегчения понимания, показан исходный Конструкция карбюратора Benz с 1888 года; основной принцип работы (объясненный во вставке ниже) остается неизменным и по сей день.

Изображение: очень упрощенная схема оригинального карбюратора Карла Бенца из его патент 1888 года. Топливо из бака (синий, D) поступает в так называемый генератор (зеленый, A). внизу, где он испаряется. Пары топлива проходят через серую трубу и встречаются с воздухом. вниз по той же трубе, которая попадает из атмосферы через перфорацию вверху.Воздух и топливо смешиваются в красной камере (F), затем проходят через клапан (бирюзовый, G) в цилиндр H, где они сжечь, чтобы получить силу. Иллюстрация из патента США 382,585: Карбюратор Карла Бенца. 8 мая 1888 г., любезно предоставлено Управлением по патентам и товарным знакам США.

Как работает карбюратор?

Фото: Типичный карбюратор не на что смотреть! Фото Дэвида Хоффмана любезно предоставлено ВМС США.

Карбюраторы довольно сильно различаются по конструкции и сложности. Самый простой из возможных - по существу большой вертикальный воздуховод над цилиндрами двигателя с горизонтальный топливопровод, присоединенный с одной стороны.Когда воздух течет вниз трубу, она должна проходить через узкий перегиб посередине, который заставляет его ускоряться и заставляет его давление падать. Это изломано секция называется Вентури . Падающее давление воздуха создает эффект всасывания, который втягивает воздух через топливопровод на сторона.

Иллюстрация: Эффект Вентури: когда жидкость течет в более узкое пространство, ее скорость увеличивается, но давление падает. Это объясняет, почему ветер свистит между зданиями и почему лодки, плывущие параллельно друг другу, часто сталкиваются друг с другом.Это пример закона сохранения энергии: если бы давление не упало, жидкость, втекая в узкое сечение, набирала бы дополнительную энергию, что нарушило бы один из самых основных законов физики.

Воздушный поток втягивает топливо, чтобы присоединиться к нему, что нам как раз и нужно, но как мы можем регулировать воздушно-топливную смесь? Карбюратор имеет два поворотных клапаны над и под трубкой Вентури. Вверху есть клапан под названием дроссель , который регулирует, сколько воздуха может проходить в.Если заслонка закрыта, меньше воздуха проходит через трубу и Вентури всасывает больше топлива, поэтому двигатель становится более богатым топливом. смесь. Это удобно, когда двигатель холодный, при первом запуске и работает довольно медленно. Под трубкой Вентури есть второй клапан назвал дроссель . Чем больше открыта дроссельная заслонка, тем больше воздух проходит через карбюратор и чем больше топлива он затягивает из трубу в сторону. При поступлении большего количества топлива и воздуха двигатель высвобождает больше энергии и дает больше мощности, и машина едет быстрее.Вот почему открытие дроссельной заслонки заставляет машину ускоряться: это эквивалент дуть на костер, чтобы подать больше кислорода и сделать его горят быстрее. Дроссельная заслонка связана с педалью акселератора в машине или дроссельной заслонке на руле мотоцикла.

Впуск топлива в карбюратор немного сложнее, чем мы описали до сих пор. К топливной трубе прикреплен своего рода мини-топливный бак, называемый Поплавковая камера подачи (небольшая емкость с поплавком и клапаном внутри).Когда камера подает топливо в карбюратор, уровень топлива опускается, и поплавок падает вместе с ним. Когда поплавок опускается ниже определенного уровня, он открывает клапан, позволяющий топливо в камеру для заправки из основного бензобака. Когда камера заполняется, поплавок поднимается, закрывает клапан, и подача топлива снова отключается. (The поплавковая подающая камера работает как унитаз, с поплавком эффективно выполняет ту же работу, что и шаровой кран - клапан, который помогает наполнять унитаз после промывки используйте необходимое количество воды.Что общего у автомобильных двигателей и туалетов? Больше, чем вы могли подумать!)

Итак, вот как это все работает:

  1. Воздух поступает в верхнюю часть карбюратора из воздухозаборника автомобиля, проходя через фильтр, очищающий его от мусора.
  2. При первом запуске двигателя дроссельная заслонка (синяя) может быть настроена так, чтобы она почти перекрывала верхнюю часть трубы, чтобы уменьшить количество поступающего воздуха (увеличивая содержание топлива в смеси, поступающей в цилиндры).
  3. В центре трубки воздух проходит через узкий изгиб, называемый трубкой Вентури. Это заставляет его ускоряться и заставляет его давление падать.
  4. Падение давления воздуха вызывает всасывание в топливопроводе (справа), всасывающее топливо (оранжевый).
  5. Дроссель (зеленый) - это клапан, который поворачивается для открытия или закрытия трубы. Когда дроссельная заслонка открыта, в цилиндры поступает больше воздуха и топлива, поэтому двигатель производит больше мощности, а автомобиль едет быстрее.
  6. Смесь воздуха и топлива стекает в цилиндры.
  7. Топливо (оранжевый) подается из мини-топливного бака, называемого камерой поплавковой подачи.
  8. Когда уровень топлива падает, поплавок в камере опускается и открывает клапан наверху.
  9. Когда клапан открывается, в камеру поступает больше топлива из основного бензобака. Это заставит поплавок подняться и снова закрыть клапан.

Узнать больше

На этом сайте

Книги

Для читателей постарше
Для младших читателей
  • Car Science Ричард Хаммонд.Дорлинг Киндерсли, 2007. От материалов, из которых они сделаны, до того, как они рассекают воздух, эта книга объясняет науку, которая заставляет машины двигаться (возраст 9–12).

Видео

  • Карбюраторы - объяснение: это видео с сайта Engineering Explained охватывает почти то же самое, что и моя статья, но рассказывает нам о том, что происходит. Он также распространяется на карбюраторы со второй трубкой Вентури.
  • Карбюраторы поплавкового типа, объясненные Пимпинпенцем. Хороший четкий обзор поплавкового карбюратора с игольчатым клапаном.

Статьи

Патенты

Для получения более подробной технической информации посетите эти:

  • Патент США 382,585: Карбюратор Карла Бенца. 8 мая 1888 г. Оригинальное устройство для смешивания топлива и воздуха, изобретенное в конце 19 века пионером автомобилестроения Карлом Бенцем.
  • Патент США 1520261: Карбюратор Джорджа Ф. Риттера и др., Tillotson Manufacturing. 23 декабря 1924 года. Типичный карбюратор начала 20 века.
  • Патент США 1938497: Карбюратор Чарльза Н.Пог. 5 декабря 1933 года. Эта конструкция предназначена для испарения большего количества топлива и обеспечения большей мощности двигателя.
  • Патент США 4 501 709: Карбюратор Вентури с регулируемым приводом от Тадахиро Ямамото и Тадаки Оота, Nissan. 26 февраля 1985 г. В этом более современном типе карбюратора размер трубки Вентури изменяется автоматически для поддержания постоянного уровня всасывания.
.

Что такое поплавок карбюратора?

В то время как в современных автомобилях используются системы электронного впрыска топлива (EFI), в большинстве автомобилей до 1990 года, а также в современном силовом оборудовании и мотоциклах по-прежнему используется карбюратор для подачи топлива в двигатель. Это простая и высоконадежная система, но недостаточно точная для современных стандартов выбросов, поэтому ее заменили на EFI. При диагностике проблем с топливом в автомобиле с карбюратором важно понимать роль различных частей, таких как поплавок карбюратора, трубка Вентури, дроссельная заслонка, жиклеры и другие.

Как работает карбюратор

По своей сути карбюратор - это топливная трубка в воздушном потоке перед дроссельной заслонкой. Узкая секция, трубка Вентури, увеличивает местный воздушный поток, снижая давление. Эта зона пониженного давления втягивает топливо через жиклер в воздушный поток, смешивая и испаряя его на пути через впускной коллектор и в цилиндры. Расход топлива через жиклер контролируется иглой, настроенной для улучшения экономии топлива и производительности.

Сбоку карбюратора установлена ​​поплавковая подающая камера, или «чаша», которая по сути представляет собой миниатюрный топливный бак, питаемый от основного топливного бака.Поскольку карбюратор не может использовать топливо под давлением, будь то топливный насос или сила тяжести, в поплавковой камере поддерживается атмосферное давление. Игла поплавка карбюратора, перемещаемая поплавком, регулирует расход топлива, поддерживая уровень топлива в камере.

Как следует из названия, «поплавок» должен плавать в топливе, поэтому он обычно изготавливается из полого пластика, металла или топливостойкой пены - некоторые из них раньше делали из пробки. Когда уровень топлива в поплавковой камере падает, поплавок падает вместе с ним, открывая поплавковую иглу и позволяя топливу попасть в поплавковую камеру.По мере заполнения поплавковой камеры поплавок перемещается вверх, закрывая иглу поплавка и останавливая поток топлива в камеру.

Общие проблемы с поплавками карбюратора

  • Затопление двигателя - это, безусловно, самая распространенная проблема с поплавками карбюратора. Если поплавок опускается, игла поплавка остается открытой, заполняя поплавковую камеру до верха, а затем нагнетая топливо в карбюратор, заливая двигатель. Это может быть вызвано коррозией металлических поплавков или их растрескиванием и заполнением топливом.Поплавок также может сломаться, вызывая ту же проблему, но это не обычное явление.
  • Работа слишком богатая или слишком бедная - На некоторых карбюраторах поплавок регулируется обычно с помощью винта или небольшого металлического язычка. Если поплавок карбюратора слишком высокий или слишком низкий, это может привести к перекосу топливной коррекции слишком высоко или слишком низко. Поплавки из насыщенной пены часто являются причиной проблем с богатой работой. Вы можете отрегулировать уровень поплавка винтом или согнув язычок.
  • Глохнет на высокой скорости - это может быть из-за слишком низкого поплавка карбюратора, который не удерживает достаточно топлива в камере.На высоких оборотах карбюратор вытягивает из камеры столько топлива, что топливный насос не успевает за ним. Если это происходит часто, у вас могут быть проблемы с подачей топлива, например, забитый топливный фильтр или перегиб топливопровода, или вам может потребоваться другой карбюратор или топливный насос. Вы также можете страдать от воздействия этанола, разрушающего вашу топливную систему, чего можно избежать с помощью кондиционера топлива.

Хотя карбюраторы и устарели в современном мире выбросов, вы все еще можете найти их повсюду - возможно, даже в вашем собственном гараже.Уход за карбюратором (или даже его восстановление) не требует ничего, кроме основных ручных инструментов и чистящих средств. Вы также можете поддерживать чистоту внутри карбюратора, периодически используя средство для ухода за двигателем, такое как Sea Foam.

Ознакомьтесь со всеми продуктами системы управления топливом и выбросами, доступными в NAPA Online, или доверьтесь одному из наших 17 000 пунктов обслуживания NAPA AutoCare для текущего обслуживания и ремонта. Для получения дополнительной информации о том, что делает поплавок карбюратора и общих проблемах, связанных с ним, поговорите со знающим экспертом в местном магазине NAPA AUTO PARTS.

Фото любезно предоставлено Wikimedia Commons.

.

Simple English Wikipedia, бесплатная энциклопедия

Некоторые химические элементы называются металлами . Они являются большинством элементов периодической таблицы. Эти элементы обычно обладают следующими свойствами:

  1. Они могут проводить электричество и тепло.
  2. Их легко сформировать.
  3. У них блестящий вид.
  4. Они имеют высокую температуру плавления.

Большинство металлов остаются твердыми при комнатной температуре, но это не обязательно.Ртуть жидкая. Сплавы - это смеси, в которых хотя бы одна часть смеси представляет собой металл. Примеры металлов: алюминий, медь, железо, олово, золото, свинец, серебро, титан, уран и цинк. Хорошо известные сплавы включают бронзу и сталь.

Изучение металлов называется металлургией.

Признаки сходства металлов (свойства металлов) [изменить | изменить источник]

Большинство металлов твердые, блестящие, они кажутся тяжелыми и плавятся только при очень высоких температурах.Куски металла издают звон колокольчика при ударе чего-то тяжелого (они звонкие). Тепло и электричество могут легко проходить через металл (он проводящий). Кусок металла можно разбить на тонкий лист (он ковкий) или растянуть на тонкую проволоку (он пластичный). Металл трудно разорвать (у него высокая прочность на разрыв) или разбить (у него высокая прочность на сжатие). Если надавить на длинный тонкий кусок металла, он гнется, а не сломается (он эластичный). За исключением цезия, меди и золота, металлы имеют нейтральный серебристый цвет.

Не все металлы обладают этими свойствами. Ртуть, например, жидкая при комнатной температуре, свинец очень мягкий, а тепло и электричество не проходят через железо так, как через медь.

Мост в России металлический, вероятно, железный или стальной.

Металлы очень полезны людям. Их используют для изготовления инструментов, потому что они могут быть прочными и легко поддающимися обработке. Из железа и стали строили мосты, здания или корабли.

Некоторые металлы используются для изготовления таких предметов, как монеты, потому что они твердые и не изнашиваются быстро.Например, медь (блестящая и красного цвета), алюминий (блестящая и белая), золото (желтая и блестящая), а также серебро и никель (также белые и блестящие).

Некоторые металлы, например сталь, можно сделать острыми и оставаться острыми, поэтому их можно использовать для изготовления ножей, топоров или бритв.

Редкие металлы высокой стоимости, такие как золото, серебро и платина, часто используются для изготовления ювелирных изделий. Металлы также используются для изготовления крепежа и шурупов. Кастрюли, используемые для приготовления пищи, могут быть сделаны из меди, алюминия, стали или железа.Свинец очень тяжелый и плотный, и его можно использовать в качестве балласта на лодках, чтобы не допустить их опрокидывания или защитить людей от ионизирующего излучения.

Многие изделия, сделанные из металлов, на самом деле могут быть сделаны из смесей по крайней мере одного металла с другими металлами или с неметаллами. Эти смеси называются сплавами. Некоторые распространенные сплавы:

Люди впервые начали делать вещи из металла более 9000 лет назад, когда они обнаружили, как получать медь из [] руды. Затем они научились делать более твердый сплав - бронзу, добавляя к ней олово.Около 3000 лет назад они открыли железо. Добавляя небольшое количество углерода в железо, они обнаружили, что из них можно получить особенно полезный сплав - сталь.

В химии металл - это слово, обозначающее группу химических элементов, обладающих определенными свойствами. Атомы металла легко теряют электрон и становятся положительными ионами или катионами. Таким образом, металлы не похожи на два других вида элементов - неметаллы и металлоиды. Большинство элементов периодической таблицы - металлы.

В периодической таблице мы можем провести зигзагообразную линию от элемента бора (символ B) до элемента полония (символ Po). Элементы, через которые проходит эта линия, - это металлоиды. Элементы, расположенные выше и справа от этой линии, являются неметаллами. Остальные элементы - это металлы.

Большинство свойств металлов обусловлено тем, что атомы в металле не очень крепко удерживают свои электроны. Каждый атом отделен от других тонким слоем валентных электронов.

Однако некоторые металлы отличаются. Примером может служить металлический натрий. Он мягкий, плавится при низкой температуре и настолько легкий, что плавает на воде. Однако людям не следует пробовать это, потому что еще одно свойство натрия состоит в том, что он взрывается при соприкосновении с водой.

Большинство металлов химически стабильны и не вступают в реакцию легко, но некоторые реагируют. Реактивными являются щелочные металлы, такие как натрий (символ Na) и щелочноземельные металлы, такие как кальций (символ Ca). Когда металлы действительно вступают в реакцию, они часто реагируют с кислородом.Оксиды металлов являются основными. Оксиды неметаллов кислые.

Соединения, в которых атомы металлов соединены с другими атомами, образуя молекулы, вероятно, являются наиболее распространенными веществами на Земле. Например, поваренная соль - это соединение натрия.

Кусок чистой меди, найденной как самородная медь

Считается, что использование металлов - это то, что отличает людей от животных. До того, как стали использовать металлы, люди делали инструменты из камня, дерева и костей животных. Сейчас это называется каменным веком.

Никто не знает, когда был найден и использован первый металл. Вероятно, это была так называемая самородная медь, которую иногда находят большими кусками на земле. Люди научились делать из него медные инструменты и другие вещи, хотя для металла он довольно мягкий. Они научились плавке, чтобы получать медь из обычных руд. Когда медь плавили на огне, люди научились делать сплав под названием бронза, который намного тверже и прочнее меди. Из бронзы делали ножи и оружие.Это время в истории человечества примерно после 3300 г. до н.э. часто называют бронзовым веком, то есть временем бронзовых инструментов и оружия.

Примерно в 1200 году до нашей эры некоторые люди научились делать железные орудия труда и оружие. Они были даже тверже и прочнее бронзы, и это было преимуществом на войне. Время железных инструментов и оружия теперь называется железным веком. . Металлы были очень важны в истории человечества и цивилизации. Железо и сталь сыграли важную роль в создании машин. Золото и серебро использовались в качестве денег, чтобы люди могли торговать, то есть обмениваться товарами и услугами на большие расстояния.

В астрономии металл - это любой элемент, кроме водорода или гелия. Это потому, что эти два элемента (а иногда и литий) - единственные, которые образуются вне звезд. В небе спектрометр может видеть признаки металлов и показывать астроному металлы в звезде.

В организме человека некоторые металлы являются важными питательными веществами, такими как железо, кобальт и цинк. Некоторые металлы могут быть безвредными, например рутений, серебро и индий. Некоторые металлы могут быть токсичными в больших количествах. Другие металлы, такие как кадмий, ртуть и свинец, очень ядовиты.Источники отравления металлами включают горнодобывающую промышленность, хвостохранилища, промышленные отходы, сельскохозяйственные стоки, профессиональные воздействия, краски и обработанную древесину.

.

Смотрите также