Щелочные металлы с чем взаимодействуют


Характерные химические свойства щелочных металлов » HimEge.ru

•Восстановительная способность увеличивается в ряду ––Li–Na–K–Rb–Cs.

•Все соединения щелочных металлов имеют ионный характер.

•Практически все соли растворимы в воде.

•Вследствие своей активности щелочные металлы хранят под слоем керосина, чтобы преградить доступ воздуха и влаги. Литий очень легкий и в керосине всплывает на поверхность, поэтому его хранят под слоем вазелином.

1.      Щелочные металлы активно взаимодействуют с водой:

2Na + 2H2O → 2NaOH + H2­

2Li + 2H2O → 2LiOH + H2­

 2.      Реакция щелочных металлов с кислородом:

4Li + O2 → 2Li2O (оксид лития)

2Na + O2 → Na2O2 ( пероксид натрия)

K + O2 → KO(надпероксид калия)

На воздухе щелочные металлы мгновенно окисляются. Поэтому их хранят под слоем органических растворителей (керосин и др.).

3.      В реакциях щелочных металлов с другими неметаллами образуются бинарные соединения:

2Li + Cl2 → 2LiCl (галогениды)

2Na + S → Na2S (сульфиды)

2Na + H2 → 2NaH (гидриды)

6Li + N2 → 2Li3N (нитриды)

2Li + 2C → Li2C2 (карбиды)

4.      Реакция щелочных металлов с кислотами

(проводят редко, идет конкурирующая реакция с водой):

2Na + 2HCl → 2NaCl + H2­

5. Взаимодействие щелочных металлов с аммиаком

(образуется амид натрия):

2Li + 2NH3 = 2LiNH2 + H2

6. Взаимодействие щелочных металлов со спиртами и фенолами, которые проявляют в данном случае кислотные свойства:

2Na + 2C2H5OH = 2C2H5ONa + H2;

2K + 2C6H5OH = 2C6H5OK + H2;

7. Качественная реакция на катионы щелочных металлов — окрашивание пламени в следующие цвета:

Li+ – карминово-красный

Na+ – желтый

K+, Rb+ и Cs+ – фиолетовый

Получение щелочных металлов

Металлические литий, натрий и калий получают электролизом расплава солей (хлоридов), а рубидий и цезий – восстановлением в вакууме при нагревании их хлоридов кальцием: 2CsCl+Ca=2Cs+CaCl2
В небольших масштабах используется также вакуум-термическое получение натрия и калия:

2NaCl+CaC2=2Na+CaCl2+2C;
4KCl+4CaO+Si=4K+2CaCl2+Ca2SiO4.

Активные щелочные металлы выделяются в вакуум-термических процессах благодаря своей высокой летучести (их пары удаляются из зоны реакции).

Особенности химических свойств s-элементов I группы и их физиологическое действие

Электронная конфигурация атома лития 1s22s1 .  У него самый большой во 2-м периоде атомный радиус, что облегчает отрыв валентного электрона и возникновение иона Li+ со стабильной конфигурацией инертного газа (гелия). Следовательно, его соединения образуются с передачей электрона от лития к другому атому и возникновением ионной связи с небольшой долей ковалентности. Литий ‑ типичный металлический элемент. В виде вещества это щелочной металл. От других членов I группы он отличается малыми размерами и наименьшей, по сравнению с ними, активностью. В этом отношении он напоминает расположенный по диагонали от Li элемент II группы ‑ магний. В растворах ион Li + сильно сольватирован; его окружают несколько десятков молекул воды. Литий по величине энергии сольватации — присоединения молекул растворителя, стоит ближе к протону, чем к катионам щелочных металлов.

Малый размер иона Li+, высокий заряд ядра и всего два электрона создают условия для возникновения вокруг этой частицы довольно значительного поля положительного заряда, поэтому в растворах к нему притягивается значительное число молекул полярных растворителей и его координационное число велико, металл способен образовывать значительное число литийорганических соединений.

Натрием начинается 3-й период, поэтому у него на внешнем уровне всего 1е , занимающий 3s-орбиталь. Радиус атома Na — наибольший в 3-м периоде. Эти две особенности определяют характер элемента. Его электронная конфигурация 1s22s22p63s1.  Единственная степень окисления натрия +1. Электроотрицательность его очень мала, поэтому в соединениях натрий присутствует только в виде положительно заряженного иона и придает химической связи ионный характер. По размеру ион Na+ значительно больше, чем Li+, и сольватация его не так велика. Однако в растворе в свободном виде он не существует.

Физиологическое значение ионов К+ и Na+ связано с их различной адсорбируемостью на поверхности компонентов, входящих в состав земной коры. Соединения натрия лишь незначительно подвержены адсорбции, в то время как соединения калия прочно удерживаются глиной и другими веществами. Мембраны клеток, являясь поверхностью раздела клетка ‑ среда, проницаемы для ионов К+, вследствие чего внутриклеточная концентрация К+ значительно выше, чем ионов Na+ . В то же время в плазме крови концентрация Na+ превышает содержание в ней калия. С этим обстоятельством связывают возникновение мембранного потенциала клеток. Ионы К+ и Na+ ‑  одни из основных компонентов жидкой фазы организма. Их соотношение с ионами Са2+ строго определенно, а его нарушение приводит к патологии. Введение ионов Na+ в организм не оказывает заметного вредного влияния. Повышение же содержания ионов К + вредно, но в обычных условиях рост его концентрации никогда не достигает опасных величин. Влияние ионов Rb+, Cs+, Li+ еще недостаточно изучено.

Из различных поражений, связанных с применением соединений щелочных металлов, чаще всего встречаются ожоги растворами гидроксидов. Действие щелочей связано с растворением в них белков кожи и образованием щелочных альбуминатов. Щелочь вновь выделяется в результате их гидролиза и действует на более глубокие слои организма, вызывая появление язв. Ногти под влиянием щелочей становятся тусклыми и ломкими. Поражение глаз, даже очень разбавленными растворами щелочей, сопровождается не только поверхностными разрушениями, но нарушениями более глубоких участков глаза (радужной оболочки) и приводит к слепоте. При гидролизе амидов щелочных металлов одновременно образуется щелочь и аммиак, вызывающие трахеобронхит фибринозного типа и воспаление легких.

Калий был получен Г. Дэви практически одновременно с натрием в 1807 г. при электролизе влажного гидроксида калия. От названия этого соединения ‑ «едкое кали» и получил свое наименование элемент. Свойства калия заметно отличаются от свойств натрия, что обусловлено различием величин радиусов их атомов и ионов. В соединениях калия связь более ионная, а в виде иона К+ он обладает меньшим поляризующим действием, чем натрий, из-за больших размеров. Природная смесь состоит из трех изотопов 39К, 40К, 41К. Один из них 40Крадиоактивен и определенная доля радиоактивности минералов и почвы связана с присутствием этого изотопа. Его период полураспада велик ‑ 1,32 млрд. лет. Определить присутствие калия в образце довольно легко: пары металла и его соединения окрашивают пламя в фиолетово-красный цвет. Спектр элемента довольно прост и доказывает наличие 1е на 4s-орбитали. Изучение его послужило одним из оснований для нахождения общих закономерностей в строении спектров.

В 1861 г. при исследовании соли минеральных источников спектральным анализом Роберт Бунзен обнаружил новый элемент. Его наличие доказывалось темно-красными линиями в спектре, которых не давали другие элементы. По цвету этих линий элемент и был назван рубидием (rubidus—темно-красный). В 1863 г. Р. Бунзен получил этот металл и в чистом виде восстановлением тартрата рубидия (виннокислой соли) сажей. Особенностью элемента является легкая возбудимость его атомов. Электронная эмиссия у него появляется под действием красных лучей видимого спектра. Это связано с небольшой разницей в энергиях атомных 4d и 5s-орбиталей. Из всех щелочных элементов, имеющих стабильные изотопы, рубидию (как и цезию) принадлежит один из самых больших атомных радиусов и маленький потенциал ионизации. Такие параметры определяют характер элемента: высокую электроположительность, чрезвычайную химическую активность, низкую температуру плавления (390C) и малую устойчивость к внешним воздействиям.

Открытие цезия, как и рубидия, связано со спектральным анализом. В 1860 г. Р.Бунзен обнаружил две яркие голубые линии в спектре, не принадлежащие ни одному известному к тому времени элементу. Отсюда произошло и название «цезиус» (caesius), что значит небесно-голубой. Это последний элемент подгруппы щелочных металлов, который ещё встречается  в измеримых количествах. Наибольший атомный радиус и наименьшие первые потенциалы ионизации определяют характер и поведение этого элемента. Он обладает ярко выраженной электроположительностью и ярко выраженными металлическими качествами. Стремление отдать внешний 6s-электрон приводит к тому, что все его реакции протекают исключительно бурно. Небольшая разница в энергиях атомных 5d- и 6s-орбиталей обусловливает легкую возбудимость атомов. Электронная эмиссия у цезия наблюдается под действием невидимых инфракрасных лучей (тепловых). Указанная особенность структуры атома определяет хорошую электрическую проводимость тока. Все это делает цезий незаменимым в электронных приборах. В последнее время все больше внимания уделяется цезиевой плазме как топливу будущего и в связи с решением проблемы термоядерного синтеза.

На воздухе литий активно реагирует не только с кислородом, но и с азотом и покрывается пленкой, состоящей из Li3N (до 75%) и Li2O. Остальные щелочные металлы образуют пероксиды (Na2O2) и надпероксиды (K2O4 или KO2).

Перечисленные вещества реагируют с водой:

Li3N + 3 H2O = 3 LiOH + NH3 ;

Na2O2 + 2 H2O = 2 NaOH + H2O2 ;

K2O4 + 2 H2O = 2 KOH + H2O2 + O2 .

Для регенерации воздуха на подводных лодках и космических кораблях, в изолирующих противогазах и дыхательных аппаратах боевых пловцов (подводных диверсантов) использовалась смесь «оксон»:

Na2O2+CO2=Na2CO3+0,5O2 ;

K2O4 + CO2 = K2CO3+ 1,5 O2 .

В настоящее время это стандартная начинка регенерирующих патронов изолирующих противогазов для пожарных.
Щелочные металлы реагируют при нагревании с водородом, образуя гидриды:

2Li+H2=2LiH.

Гидрид лития используется как сильный восстановитель.

Гидроксиды щелочных металлов разъедают стеклянную и фарфоровую посуду, их нельзя нагревать и в кварцевой посуде:

SiO2+2NaOH=Na2SiO3+H2O.

Гидроксиды натрия и калия не отщепляют воду при нагревании вплоть до температур их кипения (более 13000С). Некоторые соединения натрия называют содами:

а) кальцинированная сода, безводная сода, бельевая сода или просто сода – карбонат натрия Na2CO3;
б) кристаллическая сода – кристаллогидрат карбоната натрия Na2CO3.10H2O;
в) двууглекислая или питьевая – гидрокарбонат натрия NaHCO3;
г) гидроксид натрия NaOH называют  каустической содой или каустиком.

 

Определение щелочного металла, расположение в периодической таблице, свойства

Определение: что такое щелочные металлы

Щелочные металлы, также известные как семейство щелочных металлов, представляют собой группу из шести элементов, характеризующихся общими физическими и химическими свойствами, схожей электронной конфигурацией и общими периодическими тенденциями. Все щелочные металлы встречаются в природе, но, поскольку они обладают высокой реакционной способностью, они не встречаются свободно в чистом виде [1] .

Пример щелочного металла Натрий

Где находятся щелочные металлы в Периодической таблице

Они находятся в группе 1 (первый столбец слева) периодической таблицы.Все щелочные металлы находятся в s-блоке, поскольку электрон на внешней оболочке их атома (валентный электрон) находится на s-орбитали [2, 3]

Щелочные металлы на первичном столе

Почему они называются щелочными металлами

Когда элементы группы 1 реагируют с водой, все они образуют щелочные растворы. Итак, семейство щелочных металлов называется семейством [4] .

Общие свойства и характеристики щелочных металлов

Физические свойства

Общие металлические свойства

  • Серебристого цвета с блестящим внешним видом [2]
  • Хорошая тепло- и электропроводность

Необычные неметаллические свойства, разделяемые элементами группы 1

  • Достаточно мягкий, чтобы его можно было разрезать пластиковым ножом при комнатной температуре [5]
  • Низкие температуры плавления и кипения [6]
  • Низкая плотность (Li, Na и K, достаточно легкие, чтобы плавать в воде)

Химические свойства

  • Все щелочные металлы обладают высокой реакционной способностью
Почему щелочные металлы настолько реактивны

Наличие одного валентного электрона (электрона на внешней оболочке их атома) делает все щелочные металлы очень реактивными при комнатной температуре и стандартном давлении .Им требуется мало энергии, чтобы потерять электрон и образовать положительно заряженные ионы (катионы) с зарядом +1.

Электронная конфигурация щелочных металлов

Эти элементы легко вступают в реакцию даже с кислородом воздуха с образованием оксидов, из-за которых их блестящая поверхность становится бледно-серой за считанные секунды, если их оставить на открытом воздухе. [7] .

Как щелочные металлы реагируют с водой

Когда щелочной металл, например натрий (Na) вступает в контакт с водой, единственный валентный электрон покидает атом натрия, и в результате реакции образуются гидроксид и ионы натрия вместе с водородом [5] :

Na 2 + 2H 2 O -> H 2 + 2Na + + 2OH -

Ионы Na + и OH - довольно нестабильны в водном растворе, поэтому они образуют гидроксид натрия [4].Окончательное уравнение выглядит следующим образом:

Na 2 + 2H 2 O -> H 2 + 2NaOH

Примеры реакции некоторых других щелочных металлов с водой:

2K + 2H 2 O -> H 2 + 2KOH

2Li + 2H 2 O -> H 2 + 2LiOH

2Rb + 2H 2 O -> H 2 + 2RbOH

Тепло, образующееся в результате реакции, воспламеняет образующиеся атомы водорода, вызывая значительный взрыв [8] .

Периодические тенденции щелочных металлов

В нижнюю группу 1 периодической таблицы, которую вы перемещаете, для щелочных металлов очевидны следующие тенденции:

  • Понижение температуры плавления и кипения [4]
  • Увеличивающаяся плотность и вес , где Li - самый легкий, а Fr - самый тяжелый (хотя натрий и калий являются исключением, поскольку последний менее плотный, чем первый) [2]
  • Увеличение атомного радиуса
  • Повышение реакционной способности (из-за увеличения атомного радиуса легче выбить валентный электрон в элементах, расположенных ниже по группе, что делает Li наименее реактивным, а франций - наиболее реактивным щелочным металлом) [2]

Видео: реакционная способность и периодические тенденции щелочных металлов

Какие щелочные металлы используются для

Три верхних элемента группы, Li, Na и K, наряду с Cs, находят различное применение в различных отраслях промышленности, включая производство стекла, фотографию, оружие и взрывчатые вещества, а также батареи. Соединения натрия находят повседневное применение в пищевой промышленности. .Rb в основном используется в исследовательских целях [10] . Fr не имеет постоянного применения, так как редко встречается в природе [5] .

FAQ

1. Почему щелочные металлы хранятся в масле?

Отв. Поскольку щелочные металлы в чистом виде обладают высокой реакционной способностью, их необходимо хранить в масле, чтобы они не вступали в контакт с воздухом и водой [2] .

2. Какие щелочные металлы наиболее распространены?

Отв. Натрий и калий - самые распространенные щелочные металлы.

3. Почему водород не считается щелочным металлом?

Отв. Несмотря на наличие единственного электрона во внешней оболочке, водород (H) не считается щелочным металлом, потому что:

  • H не металл, это газ.
  • Он также гораздо менее реактивен, ему требуется больше энергии для высвобождения этого единственного электрона для образования положительно заряженных ионов.
  • H может также получить электрон, чтобы образовать отрицательно заряженные ионы, как элементы в галогенной группе [17] .

4. Чем отличаются щелочные металлы от щелочноземельных металлов?

Отв. Щелочноземельные металлы - это элементы 2 группы в периодической таблице. Несмотря на некоторое сходство в их физических свойствах, они помещены в разные группы, главным образом потому, что щелочноземельные металлы имеют два электрона на внешней оболочке их атома. Поскольку потеря 2 электронов требует больше энергии, чем потеря одного, щелочноземельные металлы менее реактивны, чем щелочные металлы [13] .

5. Почему галогены и щелочные металлы могут образовывать ионы?

Отв. Имея 1 валентный электрон, щелочные металлы пытаются избавиться от него для достижения стабильности, в то время как галогены (например, хлор, бром, фтор и т. Д.) Имеют семь валентных электронов, то есть они пытаются получить еще 1 электрон, чтобы стать стабильными. В результате вместе они реагируют с образованием ионных соединений, таких как хлорид натрия (NaCl) и хлорид калия (Kcl) [14] .

6.Чем щелочные металлы отличаются от благородных газов?

Отв. Щелочные металлы имеют один электрон на своей внешней оболочке, в то время как все благородные газы (элементы 8 группы в периодической таблице, включая гелий, неон, аргон) имеют полную валентную зону без неспаренного электрона, который мог бы вызвать реакцию с другими молекулами [15] .

Интересные факты

  • Название группы щелочных металлов происходит от арабского слова «аль-кали», что означает «из пепла».Он был назван так потому, что большинство соединений Na и K были первоначально получены из древесной золы [16] .
  • Элементы этой группы имеют самую низкую энергию первой ионизации (минимальную энергию, необходимую для того, чтобы атом отдал электрон) в каждый период [12] .

Артикул:

  1. Определение щелочного металла (химия) - Thoughtco.com
  2. Щелочные металлы - Courses.LumenLearning.com
  3. Таблица Менделеева - ModelScience.com
  4. Группа 1 - Щелочные металлы ―BBC.com
  5. Элементы щелочных металлов: свойства, характеристики и реакции - Study.com
  6. Точки плавления и точки кипения щелочных металлов - Embibe.com
  7. Объекты группы 1 - BBC.co.uk
  8. Информация о щелочных металлах - EHS.Stanford.edu
  9. Повседневное использование щелочных металлов - SchooledbyScience.com
  10. Щелочные металлы - ScienceClarified.com
  11. Щелочные металлы - Open.edu
  12. Щелочные металлы - Tutorvista.com
  13. Щелочные и щелочноземельные металлы - TechnologyUK.net
  14. Щелочные металлы - Hyperphysics.phy-astr.gsu.edu
  15. Объясните, чем щелочные металлы отличаются от благородных газов? - Study.com
  16. Групповые тенденции: активные металлы - Mikeblaber.org
  17. Сходство водорода со щелочными металлами - Embibe.com
.

Определение и место в периодической таблице

Определение: что такое щелочноземельные металлы

Щелочноземельные металлы - это группа высокореактивных элементов, расположенных рядом с группой щелочных металлов. Хотя все щелочные металлы встречаются в природе, их высокая реакционная способность не позволяет им встречаться свободно или в чистом виде [1, 2] .

Где находятся щелочноземельные металлы в Периодической таблице

Они принадлежат к Группе 2 (следующей за группой щелочного металла) в периодической таблице, где все щелочные металлы находятся в s-блоке [3, 4] .

Щелочно-земельные металлы периодической таблицы

Примеры щелочноземельных металлов

Почему их называют щелочноземельными металлами

Щелочные металлы названы так потому, что при смешивании с водой они образуют растворы с pH выше 7 и «основными» или «щелочными» свойствами [5] . Кроме того, они находятся в земной коре и не подвержены воздействию огня или тепла [6] .

Общие свойства и характеристики щелочноземельных металлов

Физические свойства

  • Блестящий, серебристо-белый цвет
  • Низкая плотность
  • Низкие температуры кипения и плавления [1]

Химические свойства

  • Все щелочноземельные металлы обладают высокой реакционной способностью, хотя и не так сильно, как щелочные металлы [5] .
  • При контакте с водой все они сильно реагируют с образованием щелочных гидроксидов (исключение составляет бериллий, поскольку он не реагирует с водой).
  • Элементы группы 2 обычно образуют электровалентные или ионные связи в реакциях с другими элементами (опять же, Be является исключением, поскольку он образует ковалентные связи) [5]
  • Все они реагируют с галогенами и образуют галогенидные соединения [2]

Почему щелочноземельные металлы настолько реактивны

Энергия, необходимая для того, чтобы атом отдать электроны в своей внешней оболочке (валентные электроны), является энергией ионизации элемента.Чем ниже энергия ионизации, тем более реактивный элемент. Поскольку все щелочные металлы имеют только два валентных электрона, требуется небольшая энергия, чтобы заставить их отдать эти электроны с образованием катионов (2+), что приводит к высокой реакционной способности [7] .

Бериллий (Be) не реагирует с водой из-за его небольшого размера атома и относительно высокой энергии ионизации [8] .

Реакция с водой

Щелочные металлы реагируют с водой при комнатной температуре с образованием почти нерастворимых в воде гидроксидов вместе с ионами водорода с образованием основного раствора [8] .Вот как уравнение выглядит для реакции между кальцием и водой:

Ca + 2H 2 O ⟶ Ca (OH) 2 + H 2

Реакция с кислородом

Все шесть элементов группы 2 реагируют с кислородом с образованием оксидов, хотя и не так легко, как элементы группы 1. Реакция требует тепла. Следующее уравнение показывает, как магний (Mg) будет реагировать с кислородом (O 2 )

2Mg + O 2 ⟶ 2MgO

Щелочноземельных металлов используется

Be и Mg широко используются в производстве сплавов, используемых в промышленных конструкциях, включая жаропрочные заводские инструменты, а также детали автомобилей и самолетов.Ba находит применение в различных медицинских и диагностических процедурах, таких как рентген и МРТ (бариевая пища). Наиболее важное применение Sr - это производство фейерверков, поскольку он помогает создавать красочные вспышки. Помимо радия, щелочноземельные металлы также используются в лампах-вспышках и батареях.

Радий, являясь высокорадиоактивным элементом, в настоящее время не имеет промышленного применения. Ранее с его помощью использовались светящиеся краски и циферблаты часов [1, 9] .

Роль щелочноземельных металлов в биологических системах

Mg и Ca играют жизненно важную функциональную и структурную роль в физиологии растений и животных, причем Mg присутствует в молекулах хлорофилла, а Ca является одним из основных компонентов костей.Кроме того, SR необходим для выживания ряда морских существ, в первую очередь различных твердых кораллов, поскольку этот элемент помогает формировать их экзоскелеты [1, 5] .

FAQ

Q 1. Какой щелочноземельный металл самый легкий?

Отв. Бериллий - самый легкий элемент в этом семействе, имеющий наименьший атомный радиус.

Q 2. Какой щелочноземельный металл самый тяжелый?

Отв. Радий - самый тяжелый щелочноземельный металл с наибольшим атомным радиусом [10]

3 квартал.Какие щелочноземельные металлы наиболее распространены?

Отв. Кальций и магний - самые распространенные щелочноземельные металлы

Q 4. Каковы основные различия между щелочноземельными металлами и щелочными металлами?

Отв. Щелочные и щелочноземельные металлы действительно имеют некоторые схожие физические свойства, но главное различие между ними - количество валентных электронов. Щелочноземельные металлы имеют два валентных электрона, тогда как щелочные металлы имеют только один.Это делает первый менее реактивным, чем последний [11] .

Интересные факты

  • Щелочноземельные металлы представляют собой семейство наиболее реактивных элементов после щелочных металлов [5] .
  • Первый и последний элементы группы 2, Be и Ra, токсичны для живых организмов [1] .
  • Все шесть элементов образуют цветное пламя при горении: ярко-белое для бериллия и магния, красный для кальция и радия, малиновый для стронция и зеленый для бария.
  • Известно, что четыре из шести щелочноземельных элементов были впервые выделены английским химиком сэром Хамфри Дэви [2] .

Артикул:

  1. Щелочноземельные металлы - Courses.lumenlearning.com
  2. Щелочноземельные металлы - Ducksters.com
  3. Элементы S-блока в Периодической таблице: свойства и обзор - Study.com
  4. Элементы группы 2: щелочноземельные металлы - Chem.libretexts.org
  5. Направление во вторую группу - Chem4kids.com
  6. Физические свойства щелочноземельных металлов - Classnotes.org.in
  7. Щелочноземельные металлы: определение, свойства и характеристики - Study.com
  8. Реакции элементов основной группы с водой - Chem.libretexts.org
  9. Повседневное использование щелочноземельных металлов - Schooledbyscience.com
  10. Самый тяжелый щелочноземельный металл - Guinnessworldrecords.com
  11. Щелочные и щелочноземельные металлы - Technologyuk.net
.

Щелочноземельных металлов - Учебный материал для IIT JEE

 


Группа 2 периодической таблицы состоит из шести металлических элементов.Это бериллий (Be), магний (Mg), кальций (Ca), стронций (Sr), барий (Ba) и радий (Ra). Название щелочноземельных металлов было дано магнию, кальцию, барию и стронцию, поскольку их оксиды были щелочными по своей природе, и эти оксиды не подвергались воздействию тепла или огня и существовали в земле.

Итак, металлы группы 2 называются щелочноземельными металлами, потому что их гидроксиды являются сильными щелочами (как и гидроксиды щелочных металлов), плюс все они находятся в земной коре.

Появление щелочноземельных металлов


Подобно щелочным металлам, щелочноземельные металлы также обладают высокой реакционной способностью и, следовательно, не встречаются в свободном состоянии, но, вероятно, распространяются в природе в комбинированном состоянии в виде силикатов, карбонатов, сульфатов и фосфатов.

Элементы

Обилие

Основные минералы

Использует

Бериллий

от 2,8 до 10-3%

Впервые обнаружен в 1798 году в драгоценных камнях берилле и изумруде (Be 3 Al 2 Si 6 O 1 )

Используется в коррозионно-стойких сплавах.

Магний

2,33%,

7-й по содержанию элемент в земной коре

Чистый магний, впервые полученный в 1800 г., назван в честь района магнезии в Фессалии, Греция, где обнаружены большие месторождения этого минерала.

Легированный алюминием Mg широко используется в качестве конструкционных материалов из-за его высокой прочности, низкой плотности и простоты обработки.

Кальций

4,15%, 5-й по содержанию элемент в земной коре.

CaCO 3 .2H 2 O, полученный в чистом виде в 1808 году, кальций происходит от латинского слова calx, что означает «известь»

В качестве легирующего агента для повышения твердости соединений алюминия. Кальций - основная составляющая зубов и костей.

Стронций

0,038%

Обнаружен в 1787 году и назван в честь небольшого городка Стронтион (Шотландия)

SrCO 3 используется для производства стекла для кинескопов цветных телевизоров.

Барий

0.042%

Обнаружен в минералах витерит (BaCO 3 ) и барит (BaSO 4 ), в честь которых назван.

BaSO 4 используется в медицине как контрастное вещество для желудка и кишечника

Рентген

Радий

Следы

Выделено в виде хлорида в 1898 г. из минеральной настурановой обманки

Используется в радиотерапии рака

Группа IIA (щелочноземельные металлы) и группы IIB (Zn, Cd, Hg) Mg действует как мостик между IIA и IIB.

S. No.

Недвижимость

IIA (Be, Mg, Ca, Sr, Ba, Ra)

IIB (Zn, Cd, Hg)

1

Электронная конфигурация

[Инертный газ] ns 2

[Инертный газ] (n - 1) d 10 ns 2

2.

Блок

S - блок

д - квартал

3.

Степень окисления

+2

+2, ртуть также образует димерную Hg 2 +2

4.

Природа оксида

BeO амфотерный, остальные оксиды - основные.

ZnO - амфотерный, CdO и MgO - основные

5.

Природа галогенидов

Электронно-дефицитный BeX2, остальные (MX2) ионные:

MgCl 2 2 2 2

ZnCl 2 , CdCl 2 ионные, но менее IIA, HgCl 2 ковалентные.

6.

Природа сульфатов

Менее растворим в воде и растворимость снижается по группе BeSO 4 > MgSO 4 > CaSO 4 > SrSO 4 > BaSO 4

Более растворим, чем IIA

7.

Природа гидроксидов

Растворимость гидроксидов увеличивается по мере продвижения вниз по группе.

Растворимость гидроксидов уменьшается по мере продвижения вниз по группе.

8.

Природа сульфидов

Растворимый

ZnS, CdS, HgS нерастворимы и выпадают в осадок при солевом анализе.

9.

Реакционная способность

Увеличивается по мере продвижения вниз по группе Be

Уменьшается при движении вниз по группе Zn> Cd> Hg


Электронная конфигурация

Общая электронная конфигурация щелочноземельных металлов - ns 2 .

Элементы

Электронная конфигурация

Be

1 с 2 2 с 2

мг

1s 2 2s 2 sp 6 3s 2

Ca

1s 2 2s 2 2p 6 3s 2 3p 6 4s 2

Sr

[Kr] 5s 2

Ba

[Xe] 6s 2

Ra

[Rn] 7s 2


Физические свойства элементов II группы


Атомный и ионный радиусы

Атомные радиусы, а также ионные радиусы членов этого семейства меньше, чем соответствующие члены щелочных металлов.


Энергия ионизации

Щелочноземельные металлы из-за большого размера атомов имеют достаточно низкие значения энергии ионизации по сравнению с элементами p-блока. Однако с в группе энергия ионизации уменьшается с увеличением атомного номера. Это происходит из-за увеличения размера атома из-за добавления новых оболочек и увеличения величины экранирующего эффекта электронов во внутренних оболочках. Поскольку их (IE) 1 больше, чем у их соседей из щелочных металлов, металлы группы IIA имеют тенденцию к несколько меньшей реакционной способности, чем щелочные металлы.

Общий тренд реакционной способности: Ba> Sr> Ca> Mg> Be.

Состояние окисления

Щелочноземельный металл имеет два электрона в валентной оболочке, и, теряя эти электроны, эти атомы приобретают стабильную конфигурацию благородного газа. Таким образом, в отличие от щелочных металлов, щелочноземельные металлы в своих соединениях проявляют степень окисления +2.

М → М +2 + 2e -

[благородный газ]

Плотность щелочноземельных металлов

Атомный вес увеличивается от Be до Ba в группе, и объем также увеличивается, но увеличение атомного веса больше по сравнению с атомным объемом.Следовательно, плотность увеличивается от Be до Ba.

Исключение: Плотность Mg больше, чем у Ca.

Порядок: Ca


Точки плавления и кипения

Щелочноземельные металлы имеют более высокие температуры плавления и кипения по сравнению с щелочными металлами, что объясняется их малым размером и более плотноупакованной кристаллической решеткой по сравнению с щелочными металлами и наличием двух валентных электронов.


Теплота гидратации

Теплоты гидратации M 2+ уменьшаются с увеличением их ионного размера, и их значения больше, чем у ионов щелочных металлов.

Ионы щелочноземельных металлов, из-за их большего отношения заряда к размеру, оказывают гораздо более сильное электростатическое притяжение на кислород молекулы воды, окружающей их.

Поскольку щелочноземельные металлы (кроме Be) имеют тенденцию легко терять свои валентные электроны, они действуют как сильные восстановители, как указано в красных значениях E 0 .Особенно менее отрицательное значение для Be возникает из-за большой энергии гидратации, связанной с небольшим размером Be2 + и относительно большим значением теплоты сублимации.


Растворимость

Основная природа оксидов увеличивается вниз по группе, но растворимость сульфатов и карбонатов уменьшается с увеличением размера ионов.

Растворимость большинства солей уменьшается с увеличением атомной массы, хотя обычная тенденция меняется на противоположную с фторидами и гидроксидами в этой группе.

Имущество

Элементы

Be

мг

Ca

Sr

Ba

Ra

Атомный номер

4

12

20

38

56

88

Атомная масса

9.01

24,31

40,08

87,62

137,33

226,03

Металлический радиус / пм

112

160

197

215

222

Ионный радиус / пм

51

72

100

118

135

148

Энтальпия ионизации (кДж моль - 1 )

я

899

737

590

549

503

509

II

1757

1450

1146

1064

965

979

Энтальпия гидратации ионов M 2+ (кДж моль - 1 )

–2494

-1921

-1577

-1443

-1305

Электроотрицательность

(шкала Полинга)

1.57

1,31

1,00

0,95

0,89

0,9

Плотность / г моль - при 298 К

1,85

1.74

1,55

2,63

3,62

5,5

Точка плавления / K

1562

924

1124

1062

1002

973

Точка кипения / K

2745

1363

1767

1655

2078

(1973)

(неточно)

E ° (В) при 298 K для

M 2+ (водн.) + 2e - → M (с)

-1.97

-2,37

-2,87

-2,89

-2,90

-2,92

Происхождение в литосфере

2 *

2.76 **

4,6 **

384 *

390 *

10 10 **

* ppm (частей на миллион) ** Массовый процент

Реакционная способность и электродный потенциал

Все щелочноземельные металлы являются элементами с высокой реакционной способностью, поскольку они имеют сильную тенденцию терять s-электроны двух валентностей с образованием соответствующих дипозитивных ионов, имеющих конфигурацию инертного газа.Высокая реакционная способность возникает из-за их низкой энергии ионизации и высоких отрицательных значений их стандартных электродных потенциалов. Кроме того, химическая реакционная способность щелочноземельных металлов возрастает при движении вниз по группе, поскольку I.E. уменьшается, а электродные потенциалы становятся все более и более отрицательными с увеличением атомного номера от Be до Ra. Таким образом, бериллий является наименее химически активным элементом, в то время как Ba (или Ra) является наиболее активным элементом. Кроме того, поскольку энергии ионизации щелочноземельных металлов выше, а их электродный потенциал менее отрицательный, чем у соответствующих щелочных металлов.Они менее реактивны, чем соответствующие щелочные металлы.


Уменьшающий знак

Щелочноземельные металлы являются более слабыми восстановителями, чем щелочные металлы. Как и у щелочных металлов, их восстанавливающий характер также возрастает по группе. Это связано с тем, что щелочноземельные металлы имеют большую тенденцию терять электроны, поэтому они действуют как восстановитель, но поскольку их I.E. выше, а их электродные потенциалы менее отрицательны, чем у соответствующих щелочных металлов, поэтому щелочноземельные металлы являются более слабыми восстановителями, чем щелочные металлы.Сульфаты устойчивы к нагреванию, тогда как карбонаты разлагаются с образованием MO и CO2, причем температура разложения увеличивается от Mg до Ba. BeCO3 удерживается в атмосфере CO2, чтобы предотвратить его разложение.

BeCO 3

MgCO 3

CaCO 3

SrCO 3

BaCO 3

<100 ° С

540 ° С

900 ° С

1290 ° С

1360 ° С


Испытание на пламя

Ba и Mg не придают окраске известности i.е. они не проводят испытания на пламя. Это связано с их очень маленькими размерами. Ca, Sr и Ba придают пламени кирпично-красный, кроваво-красный и яблочно-зеленый цвета соответственно.

См. Следующее видео для проверки пламени щелочных металлов

Решенные примеры

Вопрос 1:

Щелочноземельные металлы показывают степень окисления +2 i.е. они всегда образуют двухвалентные катионы (M2 +). Объясни.

Решение:

Если бы энергия ионизации была единственным задействованным фактором, то элементы группы II должны были бы образовывать одновалентные ионы, то есть Mg +, Ca + и т. Д., А не Mg2 +, Ca + 2 и т. Д.

  1. Это можно объяснить следующим образом:

  2. Двухвалентные катионы щелочноземельных металлов приобретают стабильную конфигурацию инертного газа.

  3. Двухвалентные катионы образуют более прочную решетку, чем одновалентные катионы, и, следовательно, большую энергию, называемую энергией решетки, высвобождают при образовании двухвалентных катионов, чем одновалентный катион, что компенсирует высокую энергию второй ионизации.

  4. Наличие двухвалентных ионов в водном растворе связано с большей гидратацией двухвалентных ионов, что уравновешивает высокое значение второй энергии ионизации.

Теплота гидратации (энергия гидратации) щелочноземельных металлов примерно в четыре раза выше, чем у щелочных металлов сопоставимого размера. например

ΔH hyd для Na + (размер 102 мкм) = -397 кДжмоль - 1

ΔH hyd для Ca +2 (размер 100 мкм) = -1650 кДжмоль - 1

Большая энергия гидратации связана с тем, что ионы щелочноземельных металлов из-за их гораздо большего отношения заряда к размеру оказывают гораздо более сильное электростатическое притяжение к кислороду молекулы воды.

_____________________________

Вопрос 2:

Вторая энергия ионизации элементов I группы выше, чем у элементов II группы. Объясни.

Решение:

Второй электрон в случае щелочного металла должен быть удален из катиона (унипозиционного иона), который уже приобрел конфигурацию благородного газа, тогда как в случае щелочноземельных металлов второй электрон должен быть удален из катиона, который еще не приобретают стабильную конфигурацию благородного газа, поэтому удаление 2-го электрона в случае щелочноземельных металлов требует гораздо меньше энергии, чем в случае щелочных металлов.

Резкое увеличение третьей энергии ионизации из-за стабильной конфигурации инертного газа m +2 ионов. Это объясняет верхний предел степени окисления +2 для элементов.


Разница между щелочноземельными металлами и щелочными металлами

И щелочноземельные, и щелочные металлы являются элементами s-блока, поскольку последний электрон входит на ns-орбиталь. Они похожи друг на друга в некоторых отношениях, но все же есть определенные различия в их свойствах из-за разного количества электронов в валентной оболочке, меньшего атомного радиуса, высокого потенциала ионизации, большей электроотрицательности и т. Д.

Недвижимость

Металлы щелочноземельные

Щелочные металлы

1.

Электронная конфигурация

В валентности присутствует два электрона.Конфигурация ns2 (бивалентная)

В валентной оболочке присутствует один электрон. Конфигурация ns1 (одновалентная) более электроположительная

2.

Валентность

Бивалент

Моновалентный

3.

Электроположительный характер

Менее электроположительный

Более электроположительный

4.

Гидроксиды

Слабые основания, менее растворимы и разлагаются при нагревании.

Прочные основания, хорошо растворимые и устойчивые к нагреванию.

5.

Бикарбонаты

В свободном состоянии они не известны. Существуют только в растворе.

Известны в твердом состоянии.

6.

Карбонаты

Нерастворим в воде.Разлагаются при нагревании.

Растворим в воде. Не разлагается при нагревании (за исключением LiCO3)

7.

Действие азота

Непосредственно соединяется с азотом с образованием нитридов

Не смешивать напрямую с азотом, за исключением лития

8.

Действие углерода

Непосредственно соединяется с углеродом и образует карбиды

Не комбинировать напрямую с углеродом

9.

Нитраты

Разлагается при нагревании с образованием смеси NO2 и кислорода

Разлагается при нагревании с выделением только кислорода

10.

Растворимость солей

Сульфаты, фториды фосфатов, хроматы, оксалаты и т. Д. Нерастворимы в воде

Сульфаты, фосфаты, фториды, хроматы, оксиды и др. Растворимы в воде.

11.

Физические свойства

Сравнительно сложнее.Высокая температура плавления. Диамагнитный.

Мягкий парамагнитный материал с низкой температурой плавления.

12.

Гидратация соединений

Соединения сильно гидратированы. MgCl 2 .6H 2 O, CaCl 2 .6H 2 O, BaCl 2 .2H 2 O - гидратированные хлориды.

Соединения менее гидратированы. NaCl, KCl, RbCl образуют негидратированные хлориды

13.

Редукционная сила

Слабее, поскольку значения потенциала ионизации высокие, а значения потенциала окисления низкие.

Сильнее, поскольку значения потенциала ионизации низкие, а значения окислительного потенциала высокие.

См. Следующее видео для щелочных металлов и щелочноземельных металлов металлов


Химические свойства щелочноземельных металлов


Реакция с водородом (образование гидридов)

Все щелочноземельные металлы, за исключением соединения с водородом непосредственно при нагревании, с образованием гидридов металлов формулы MH 2 .

M + H 2 MH 2

Гидрид бериллия может быть также получен восстановлением BeCl 2 с помощью LiAlH 4

2BeCl2 + LiAlH 4 → 2BeH 2 + LiCl + AlCl 3

И BeH 2 , и MgH 2 представляют собой ковалентные соединения, имеющие полимерную структуру, в которой атомы H - между атомами бериллия удерживаются вместе тремя
центр - две электронные (3C - 2e) связи, как показано ниже:

Гидриды других элементов этой группы i.е. CaH 2 , SrH 2 и BaH 2 являются ионными и содержат ионы H-.

Все гидриды щелочноземельных металлов реагируют с водой с выделением газа H 2 и, таким образом, действуют как восстановители.

MH 2 + 2H 2 O → M (OH) 2 + 2H 2

CaH 2 называется Hydrolith и используется для производства H 2 под действием на него воды.


Реакция с углеродом (образование карбидов)

Когда ВеО нагревается углеродом до 2175-2275 К, образуется карбид кирпично-красного цвета формулы Ве 2 C

2BeO + 2C Be 2 C + 2CO.

Это ковалентное соединение, которое реагирует с водой с образованием метана.

Be 2 C + 4H 2 O → 2Be (OH) 2 + CH 4

Остальные щелочноземельные металлы (Mg, Ca, Sr и Ba) образуют карбиды общей формулы MC 2 либо при нагревании металла углеродом в электрической печи, либо при нагревании их оксидов углеродом.

Са + 2С СаС 2

CaO + 3C CaC 2 + CO

Все эти карбиды реагируют с водой с образованием газообразного ацетилена.

CaC 2 + 2H 2 O → HC ≡ CH + Ca (OH) 2


Реакция с галогенами

Щелочноземельные металлы реагируют с галогенами при повышенной температуре с образованием галогенидов типа MX 2 .

Действие кислот

Щелочноземельные металлы легко реагируют с кислотами с выделением водорода.

M + 2HCl → MCl 2 + H 2 (M = Be, Mg, Ca, Sr, Ba)


Реакция с аммиаком

Подобно щелочному металлу, щелочноземельные металлы растворяются в жидком аммиаке с образованием темно-синего черного раствора, из которого можно выделить аммиаки [M (NH 3 ) 6 ] 2+ .

Решенная проблема

Вопрос

Каким образом основность оксидов 2 группы увеличивается вниз по группе?

Решение:

Основность увеличивается вниз по группе

BeO

амфотерный сильно - основной


Образование пероксидов

Так как более крупные катионы стабилизируют более крупные анионы.Следовательно, тенденция к образованию пероксида увеличивается по мере увеличения размера иона металла. Таким образом, BaO 2 образуется при пропускании воздуха над нагретым BaO при 773 К.

2BaO + O 2 2BaO 2 2SrO + O 2 2SrO 2

SrO 2 получают аналогичным образом, но при высоком давлении и температуре. CaO 2 таким образом не образуется, но может быть получен в виде гидрата обработкой Ca (OH) 2 H 2 O 2 и последующим обезвоживанием продукта.

Ca (OH) 2 + H 2 O 2 → CaO 2 .2H 2 O

Неочищенный MgO 2 был получен с использованием H 2 O 2 , но перекись бериллия неизвестна.

Все пероксиды представляют собой белые кристаллические ионные твердые частицы, содержащие ион пероксида O 2- 2 . Обработка перекиси кислотами высвобождает H 2 O 2 .

BaO 2 + 2HCI → BaCI 2 + H 2 O 2


Реакция с водой (образование гидроксидов)

Электродный потенциал Be (Be 2+ / Be = -1.97 В) является наименее отрицательным среди всех щелочноземельных металлов. Это означает, что Be гораздо менее электроположителен, чем другие щелочноземельные металлы, и, следовательно, не вступает в реакцию с водой или паром даже при красном нагреве.

Электродный потенциал Mg (Mg +2 / Mg = -2,37 В), хотя и более отрицательный, чем у Be, но все же менее отрицательный, чем у щелочных металлов, и, следовательно, он не реагирует с холодной водой, но реагирует с кипением. вода или пар.

Mg + H 2 O → MgO + H 2

или, Mg + 2H 2 O → Mg (OH) 2 + H 2

Фактически, Mg образует защитный слой оксида на своей поверхности, поэтому, несмотря на его благоприятный электродный потенциал, он не реагирует легко с водой, если оксидный слой не удален путем амальгамирования его с ртутью.В образовании оксидной пленки Mg напоминает Al.

Ca, Sr и Ba имеют больший потенциал отрицательного электрода, чем у соответствующих щелочных металлов I группы, и, следовательно, реагируют даже с холодной водой, выделяя H 2 и образуя соответствующие гидроксиды металлов.

Ca + 2H 2 O → Ca (OH) 2 + H 2

Реакционная способность щелочноземельных металлов возрастает по мере продвижения вниз по группе. Однако реакция щелочноземельных металлов менее интенсивна по сравнению со щелочными металлами.


Реакция с воздухом (азотом и кислородом)

Образование оксидов и нитридов

Металл

Be относительно инертен в массивной форме и, следовательно, не реагирует ниже 873K. Однако порошкообразный Be больше, чем

.

Смотрите также