Что такое теплопроводность металлов
Теплопроводность металлов и сплавов: таблица
Все изделия, используемые человеком, способны передавать и сохранять температуру прикасаемого к ним предмета или окружающей среды. Способность отдачи тепла одного тела другому зависит от вида материала, через который проходит процесс. Свойства металлов позволяют передавать тепло от одного предмета другому, с определенными изменениями, в зависимости от структуры и размера металлической конструкции. Теплопроводность металлов - один из параметров, определяющих их эксплуатационные возможности.
Что такое теплопроводность и для чего нужна
Процесс переноса энергии атомов и молекул от горячих предметов к изделиям с холодной температурой, осуществляется при хаотическом перемещении движущихся частиц. Такой обмен тепла зависит от агрегатного состояния металла, через который проходит передача. В зависимости от химического состава материала, теплопроводность будет иметь различные характеристики. Данный процесс называют теплопроводностью, он заключается в передаче атомами и молекулами кинетической энергии, определяющей нагрев металлического изделия при взаимодействии этих частиц, или передается от более теплой части – к той, которая меньше нагрета.
Способность передавать или сохранять тепловую энергию, позволяет использовать свойства металлов для достижения необходимых технических целей в работе различных узлов и агрегатов оборудования, используемого в народном хозяйстве. Примером такого применения может быть паяльник, нагревающийся в средней части и передающий тепло на край рабочего стержня, которым выполняют пайку необходимых элементов. Зная свойства теплопроводности, металлы применяют во всех отраслях промышленности, используя необходимый параметр по назначению.
Понятие термического сопротивления и коэффициента теплопроводности
Если теплопроводность характеризует способность металлов передавать температуру тел от одной поверхности к иной, то термическое сопротивление показывает обратную зависимость, т.е. возможность металлов препятствовать такой передаче, иначе выражаясь, – сопротивляться. Высоким термическим сопротивлением обладает воздух. Именно он, больше всего, препятствует передаче тепла между телами.
Количественную характеристику изменения температуры единицы площади за единицу времени на один градус (К), называют коэффициентом теплопроводности. Международной системой единиц принято измерять этот параметр в Вт/м*град. Эта характеристика очень важна при выборе металлических изделий, которые должны передавать тепло от одного тела к другому.
Таблица 1
Металл |
Коэффициент теплопроводности металлов при температура, °С |
||||
- 100 |
0 |
100 |
300 |
700 |
|
Алюминий |
2,45 |
2,38 |
2,30 |
2,26 |
0,9 |
Бериллий |
4,1 |
2,3 |
1,7 |
1,25 |
0,9 |
Ванадий |
— |
— |
0,31 |
0,34 |
— |
Висмут |
0,11 |
0,08 |
0,07 |
0,11 |
0,15 |
Вольфрам |
2,05 |
1,90 |
1,65 |
1,45 |
1,2 |
Гафний |
— |
— |
0,22 |
0,21 |
— |
Железо |
0,94 |
0,76 |
0,69 |
0,55 |
0,34 |
Золото |
3,3 |
3,1 |
3,1 |
— |
— |
Индий |
— |
0,25 |
— |
— |
— |
Иридий |
1,51 |
1,48 |
1,43 |
— |
— |
Кадмий |
0,96 |
0,92 |
0,90 |
0,95 |
0,44 (400°) |
Калий |
— |
0,99 |
— |
0,42 |
0,34 |
Кальций |
— |
0,98 |
— |
— |
— |
Кобальт |
— |
0,69 |
— |
— |
— |
Литий |
— |
0,71 |
0,73 |
— |
— |
Магний |
1,6 |
1,5 |
1,5 |
1,45 |
— |
Медь |
4,05 |
3,85 |
3,82 |
3,76 |
3,50 |
Молибден |
1,4 |
1,43 |
— |
— |
1,04 (1000°) |
Натрий |
1,35 |
1,35 |
0,85 |
0,76 |
0,60 |
Никель |
0,97 |
0,91 |
0,83 |
0,64 |
0,66 |
Ниобий |
0,49 |
0,49 |
0,51 |
0,56 |
— |
Олово |
0,74 |
0,64 |
0,60 |
0,33 |
— |
Палладий |
0,69 |
0,67 |
0,74 |
— |
— |
Платина |
0,68 |
0,69 |
0,72 |
0,76 |
0,84 |
Рений |
— |
0,71 |
— |
— |
— |
Родий |
1,54 |
1,52 |
1,47 |
— |
— |
Ртуть |
0,33 |
0,09 |
0.1 |
0,115 |
— |
Свинец |
0,37 |
0,35 |
0,335 |
0,315 |
0,19 |
Серебро |
4,22 |
4,18 |
4,17 |
3,62 |
— |
Сурьма |
0,23 |
0,18 |
0,17 |
0,17 |
0,21 |
Таллий |
|
0,41 |
0,43 |
0,49 |
0,25 (400 0) |
Тантал |
0,54 |
0,54 |
— |
— |
— |
Титан |
— |
— |
0,16 |
0,15 |
— |
Торий |
— |
0,41 |
0,39 |
0,40 |
0,45 |
Уран |
— |
0,24 |
0,26 |
0,31 |
0,40 |
Хром |
— |
0,86 |
0,85 |
0,80 |
0,63 |
Цинк |
1,14 |
1,13 |
1,09 |
1,00 |
0,56 |
Цирконий |
— |
0,21 |
0,20 |
0,19 |
— |
От чего зависит показатель теплопроводности
Изучая способность передачи тепла металлическими изделиями выявлено, что теплопроводность зависит от:
- вида металла;
- химического состава;
- пористости;
- размеров.
Металлы имеют различное строение кристаллической решетки, а это может изменить теплопроводность материала. Так, например, у стали и алюминия, особенности строения микрочастиц влияют по-разному на скорость передачи тепловой энергии через них.
Коэффициент теплопроводности может иметь различные значения для одного и того же металла при изменении температуры воздействия. Это связано с тем, что у разных металлов градус плавления отличается, а значит, при других параметрах окружающей среды, свойства материалов также будут отличаться, а это отразится на теплопроводности.
Методы измерения
Для измерения теплопроводности металлов используют два метода: стационарный и нестационарный. Первый характеризуется достижением постоянной величины изменившейся температуры на контролируемой поверхности, а второй – при частичном изменении таковой.
Стационарное измерение проводится опытным путем, требует большого количества времени, а также применения исследуемого металла в виде заготовок правильной формы, с плоскими поверхностями. Образец располагают между нагретой и охлажденной поверхностью, а после прикосновения плоскостей, измеряют время, за которое заготовка может увеличить температуру прохладной опоры на один градус по Кельвину. Когда рассчитывают теплопроводность, обязательно учитывают размеры исследуемого образца.
Нестационарную методику исследований используют в редких случаях из-за того, что результат, зачастую, бывает необъективным. В наши дни никто, кроме ученых, не занимается измерением коэффициента, все используют, давно выведенные опытным путем, значения для различных материалов. Это обусловлено постоянством данного параметра при сохранении химического состава изделия.
Теплопроводность стали, меди, алюминия, никеля и их сплавов
Обычное железо и цветные металлы имеют разное строение молекул и атомов. Это позволяет им отличаться друг от друга не только механическими, но и свойствами теплопроводности, что, в свою очередь, влияет на применение тех или иных металлов в различных отраслях хозяйства.
Таблица 2
Сталь имеет коэффициент теплопроводности, при температуре окружающей среды 0 град. (С), равный 63, а при увеличении градуса до 600, он снижается до 21 Вт/м*град. Алюминий, в таких же условиях, наоборот – увеличит значение от 202 до 422 Вт/м*град. Сплавы из алюминия, будут также повышать теплопроводность, по мере увеличения температуры. Только величина коэффициента будет на порядок ниже, в зависимости от количества примесей, и колебаться в пределах от 100 до 180 единиц.
Медь, при изменении температуры в тех же пределах, будет уменьшать теплопроводность от 393 до 354 Вт/м*град. При этом, медь содержащие сплавы латуни будут иметь такие же свойства, как и алюминиевые, а значение теплопроводности будет изменяться от 100 до 200 единиц, в зависимости от количества цинка и других примесей в составе сплава латуни.
Коэффициент теплопроводности чистого никеля считается низким, он будет менять свое значение от 67 до 57 Вт/м*град. Сплавы с содержанием никеля, будут также иметь коэффициент с пониженным значением, который, благодаря содержанию железа и цинка, колеблется от 20 до 50 Вт/м*град. А наличие хрома, позволит понизить теплопроводность в металлах до 12 единиц, с небольшим увеличением этой величины, при нагреве.
Применение
Агрегатное состояние материалов имеет отличительную структуру строения молекул и атомов. Именно это оказывает большое влияние на металлические изделия и их свойства, в зависимости от назначения.
Отличающийся химический состав узлов и деталей из железа, позволяет обладать различной теплопроводностью. Это связано со структурой таких металлов как чугун, сталь, медь и алюминий. Пористость чугунных изделий способствует медленному нагреванию, а плотность медной структуры – наоборот, ускоряет процесс теплоотдачи. Эти свойства используют для быстрого отвода тепла или постепенного нагревания продукции инертного назначения. Примером использования свойств металлических изделий является:
- кухонная посуда с различными свойствами;
- оборудование для пайки труб;
- утюги;
- подшипники качения и скольжения;
- сантехническое оборудование для подогрева воды;
- приборы отопления.
Медные трубки широко используют в радиаторах автомобильных систем охлаждения и кондиционеров, применяемых в быту. Чугунные батареи сохраняют тепло в квартире, даже при непостоянной подаче теплоносителя требуемой температуры. А радиаторы из алюминия, способствуют быстрой передаче тепла отапливаемому помещению.
При возникновении высокой температуры, в результате трения металлических поверхностей, также важно учитывать теплопроводность изделия. В любом редукторе или другом механическом оборудовании, способность отводить тепло, позволит деталям механизма сохранить прочность и не быть подвергнутыми разрушению, в процессе эксплуатации. Знание свойств теплопередачи различных материалов, позволит грамотно применить те или иные сплавы из цветных или черных металлов.
Оцените статью:Рейтинг: 5/5 - 1 голосов
Теплопроводность металлов, металлических элементов и сплавов
Теплопроводность - k - это количество тепла, передаваемого за счет единичного температурного градиента в единицу времени в установившихся условиях в направлении, нормальном к поверхности единицы площади. Теплопроводность - k - используется в уравнении Фурье.
Металл, металлический элемент или сплав | Температура - t - ( o C) | Теплопроводность - k - (Вт / м K) |
---|---|---|
Алюминий | -73 | 237 |
" | 0 | 236 |
" | 127 | 240 |
" | 327 | 232 |
" | 527 | 220 |
Алюминий - дюралюминий (94-96% Al, 3-5% Cu, следы Mg) | 20 | 164 |
Алюминий - силумин (87% Al, 13% Si) | 20 | 164 |
Алюминиевая бронза | 0-25 | 70 |
Алюминиевый сплав 3003, прокат | 0-25 | 9 0038190|
Алюминиевый сплав 2014.отожженный | 0-25 | 190 |
Алюминиевый сплав 360 | 0-25 | 150 |
Сурьма | -73 | 30,2 |
" | 0 | 25,5 |
" | 127 | 21,2 |
" | 327 | 18,2 |
" | 527 | 16,8 |
Бериллий | -73 | 301 |
" | 0 | 218 |
" | 127 | 161 |
" | 327 | 126 |
" | 527 | 107 |
" | 727 | 89 |
" | 927 | 73 |
Бериллиевая медь 25 | 9003 8 0-2580 | |
Висмут | -73 | 9.7 |
" | 0 | 8,2 |
Бор | -73 | 52,5 |
" | 0 | 31,7 |
" | 127 | 18,7 |
« | 327 | 11,3 |
» | 527 | 8,1 |
« | 727 | 6,3 |
» | 927 | 5.2 |
Кадмий | -73 | 99,3 |
" | 0 | 97,5 |
" | 127 | 94,7 |
Цезий | -73 | 36,8 |
" | 0 | 36,1 |
Хром | -73 | 111 |
" | 0 | 94,8 |
" | 127 | 87.3 |
" | 327 | 80,5 |
" | 527 | 71,3 |
" | 727 | 65,3 |
" | 927 | 62,4 |
Кобальт | -73 | 122 |
" | 0 | 104 |
" | 127 | 84,8 |
Медь | -73 | 413 |
" | 0 | 401 |
" | 127 | 392 |
" | 327 | 383 |
" | 527 | 371 |
" | 727 | 357 |
" | 927 | 342 |
Медь электролитическая (ETP) | 0-25 | 390 |
Медь - Адмиралтейская латунь | 20 | 111 |
Медь - алюминиевая бронза (95% Cu, 5% Al) | 20 | 83 |
Медь - Бронза (75% Cu, 25% Sn) | 20 | 26 |
Медь - латунь (желтая латунь) (70% Cu, 30% Zn) | 20 | 111 |
Медь - патронная латунь (UNS C26000) | 20 | 120 |
Медь - константан (60% Cu, 40% Ni) | 20 | 22.7 |
Медь - немецкое серебро (62% Cu, 15% Ni, 22% Zn) | 20 | 24,9 |
Медь - фосфористая бронза (10% Sn, UNS C52400) | 20 | 50 |
Медь - красная латунь (85% Cu, 9% Sn, 6% Zn) | 20 | 61 |
Мельхиор | 20 | 29 |
Германий | -73 | 96,8 |
" | 0 | 66.7 |
" | 127 | 43,2 |
" | 327 | 27,3 |
" | 527 | 19,8 |
" | 727 | 17,4 |
" | 927 | 17,4 |
Золото | -73 | 327 |
" | 0 | 318 |
" | 127 | 312 |
" | 327 | 304 |
" | 527 | 292 |
" | 727 | 278 |
" | 927 | 262 |
Гафний | -73 | 24.4 |
" | 0 | 23,3 |
" | 127 | 22,3 |
" | 327 | 21,3 |
" | 527 | 20,8 |
" | 727 | 20,7 |
" | 927 | 20,9 |
Hastelloy C | 0-25 | 12 |
Инконель | 21-100 | 15 |
Инколой | 0-100 | 12 |
Индий | -73 | 89.7 |
" | 0 | 83,7 |
" | 127 | 75,5 |
Иридий | -73 | 153 |
" | 0 | 148 |
" | 127 | 144 |
" | 327 | 138 |
" | 527 | 132 |
" | 727 | 126 |
" | 927 | 120 |
Железо | -73 | 94 |
" | 0 | 83.5 |
" | 127 | 69,4 |
" | 327 | 54,7 |
" | 527 | 43,3 |
" | 727 | 32,6 |
" | 927 | 28,2 |
Железо - литое | 20 | 52 |
Железо - перлитное с шаровидным графитом | 100 | 31 |
Кованое железо | 20 | 59 |
Свинец | -73 | 36.6 |
" | 0 | 35,5 |
" | 127 | 33,8 |
" | 327 | 31,2 |
Свинец химический | 0-25 | 35 |
Сурьма свинец (твердый свинец) | 0-25 | 30 |
Литий | -73 | 88,1 |
" | 0 | 79.2 |
" | 127 | 72,1 |
Магний | -73 | 159 |
" | 0 | 157 |
" | 127 | 153 |
" | 327 | 149 |
" | 527 | 146 |
Магниевый сплав AZ31B | 0-25 | 100 |
Марганец | -73 | 7.17 |
" | 0 | 7,68 |
Меркурий | -73 | 28,9 |
Молибден | -73 | 143 |
" | 0 | 139 |
" | 127 | 134 |
" | 327 | 126 |
" | 527 | 118 |
" | 727 | 112 |
" | 927 | 105 |
Монель | 0-100 | 26 |
Никель | -73 | 106 |
" | 0 | 94 |
" | 127 | 80.1 |
" | 327 | 65,5 |
" | 527 | 67,4 |
" | 727 | 71,8 |
" | 927 | 76,1 |
Никель - Кованые | 0-100 | 61-90 |
Мельхиор 50-45 (константан) | 0-25 | 20 |
Ниобий (колумбий) | -73 | 52.6 |
" | 0 | 53,3 |
" | 127 | 55,2 |
" | 327 | 58,2 |
" | 527 | 61,3 |
" | 727 | 64,4 |
" | 927 | 67,5 |
Осмий | 20 | 61 |
Палладий | 75.5 | |
Платина | -73 | 72,4 |
" | 0 | 71,5 |
" | 127 | 71,6 |
" | 327 | 73,0 |
« | 527 | 75,5 |
» | 727 | 78,6 |
» | 927 | 82,6 |
Плутоний | 20 | 8.0 |
Калий | -73 | 104 |
" | 0 | 104 |
" | 127 | 52 |
Красная латунь | 0-25 | 160 |
Рений | -73 | 51 |
" | 0 | 48,6 |
" | 127 | 46,1 |
" | 327 | 44.2 |
" | 527 | 44,1 |
" | 727 | 44,6 |
" | 927 | 45,7 |
Родий | -73 | 154 |
" | 0 | 151 |
" | 127 | 146 |
" | 327 | 136 |
" | 527 | 127 |
" | 727 | 121 |
" | 927 | 115 |
Рубидий | -73 | 58.9 |
" | 0 | 58,3 |
Селен | 20 | 0,52 |
Кремний | -73 | 264 |
" | 0 | 168 |
« | 127 | 98,9 |
» | 327 | 61,9 |
« | 527 | 42,2 |
» | 727 | 31.2 |
" | 927 | 25,7 |
Серебро | -73 | 403 |
" | 0 | 428 |
" | 127 | 420 |
" | 327 | 405 |
" | 527 | 389 |
" | 727 | 374 |
" | 927 | 358 |
Натрий | -73 | 138 |
" | 0 | 135 |
Припой 50-50 | 0-25 | 50 |
Сталь - углерод, 0.5% C | 20 | 54 |
Сталь - углеродистая, 1% C | 20 | 43 |
Сталь - углеродистая, 1,5% C | 20 | 36 |
" | 400 | 36 |
" | 122 | 33 |
Сталь - хром, 1% Cr | 20 | 61 |
Сталь - хром, 5% Cr | 20 | 40 |
Сталь - хром, 10% Cr | 20 | 31 |
Сталь - хромоникель, 15% Cr, 10% Ni | 20 | 19 |
Сталь - хромоникель, 20% Cr , 15% Ni | 20 | 15.1 |
Сталь - Hastelloy B | 20 | 10 |
Сталь - Hastelloy C | 21 | 8,7 |
Сталь - никель, 10% Ni | 20 | 26 |
Сталь - никель, 20% Ni | 20 | 19 |
Сталь - никель, 40% Ni | 20 | 10 |
Сталь - никель, 60% Ni | 20 | 19 |
Сталь - хром никель, 80% никель, 15% никель | 20 | 17 |
Сталь - хром никель, 40% никель, 15% никель | 20 | 11.6 |
Сталь - марганец, 1% Mn | 20 | 50 |
Сталь - нержавеющая, тип 304 | 20 | 14,4 |
Сталь - нержавеющая, тип 347 | 20 | 14,3 |
Сталь - вольфрам, 1% W | 20 | 66 |
Сталь - деформируемый углерод | 0 | 59 |
Тантал | -73 | 57.5 |
" | 0 | 57,4 |
" | 127 | 57,8 |
" | 327 | 58,9 |
" | 527 | 59,4 |
" | 727 | 60,2 |
" | 927 | 61 |
Торий | 20 | 42 |
Олово | -73 | 73.3 |
" | 0 | 68,2 |
" | 127 | 62,2 |
Титан | -73 | 24,5 |
" | 0 | 22,4 |
« | 127 | 20,4 |
» | 327 | 19,4 |
« | 527 | 19,7 |
» | 727 | 20.7 |
" | 927 | 22 |
Вольфрам | -73 | 197 |
" | 0 | 182 |
" | 127 | 162 |
" | 327 | 139 |
" | 527 | 128 |
" | 727 | 121 |
" | 927 | 115 |
Уран | -73 | 25.1 |
" | 0 | 27 |
" | 127 | 29,6 |
" | 327 | 34 |
" | 527 | 38,8 |
" | 727 | 43,9 |
" | 927 | 49 |
Ванадий | -73 | 31,5 |
" | 0 | 31.3 |
" | 427 | 32,1 |
" | 327 | 34,2 |
" | 527 | 36,3 |
" | 727 | 38,6 |
" | 927 | 41,2 |
Цинк | -73 | 123 |
" | 0 | 122 |
" | 127 | 116 |
" | 327 | 105 |
Цирконий | -73 | 25.2 |
" | 0 | 23,2 |
" | 127 | 21,6 |
" | 327 | 20,7 |
" | 527 | 21,6 |
" | 727 | 23,7 |
" | 927 | 25,7 |
Сплавы - температура и теплопроводность
Температура и теплопроводность для
- Hastelloy A
- Инконель
- Navarich
- Advance
- Монель
сплавы:
Теплопроводность металлов и сплавов
В этой статье представлены данные теплопроводности для ряда металлов и сплавов. Теплопроводность измеряет способность материала пропускать тепло через проводимость.
Теплопроводность измеряет способность материала пропускать тепло через проводимость. Теплопроводность материала сильно зависит от состава и структуры. Вообще говоря, плотные материалы, такие как металлы и камень, являются хорошими проводниками тепла, в то время как вещества с низкой плотностью, такие как газ и пористая изоляция, плохо проводят тепло.
Теплопроводность материалов требуется для анализа сетей теплового сопротивления при исследовании теплопередачи в системе.
Дополнительную информацию см. В статье «Значения теплопроводности для других распространенных материалов».
В следующих таблицах показана теплопроводность для ряда металлов и сплавов при различных температурах.
Материал | Температура | Теплопроводность | Температура | Теплопроводность |
---|---|---|---|---|
Адмиралтейство Латунь | 20 | 96.1 | 68 | 55,5 |
100 | 103,55 | 212 | 59,8 | |
238 | 116,44 | 460 | 67,3 | |
Алюминий | 20 | 225 | 68 | 130 |
100 | 218 | 212 | 126 | |
371 | 192 | 700 | 111 | |
Сурьма | 20 | 18.3 | 68 | 10,6 |
100 | 16,8 | 212 | 9,69 | |
Бериллий | 20 | 139 | 68 | 80,1 |
100 | 212 | 76,2 | ||
371 | 109 | 700 | 63,0 | |
Латунь | -165 | 106 | -265 | 61,0 |
20 | 144 | 68 | 83.0 | |
182 | 177 | 360 | 102 | |
Бронза | 20 | 189 | 68 | 109 |
Cadmiuim | 20 | 92,8 | 68 | 53,6 |
100 | 90,3 | 212 | 52,2 | |
Медь | 20 | 401 | 68 | 232 |
100 | 377 | 212 | 218 | |
371 | 367 | 700 | 212 | |
Золото | 20 | 317 | 68 | 183 |
Германий | 20 | 58.8 | 68 | 34,0 |
Инконель X | -3 | 13,2 | 27 | 7,62 |
20 | 13,7 | 68 | 7,90 | |
577 | 25,5 | 1070 | 14,7 | |
Железо | 20 | 71,9 | 68 | 41,6 |
100 | 65,7 | 212 | 38,0 | |
371 | 44.6 | 700 | 25,8 | |
Чугун (кованый) | 20 | 60,4 | 68 | 34,9 |
100 | 59,9 | 212 | 34,6 | |
Чугун (литой) | 53 | 48,0 | 127 | 27,7 |
Свинец | 0 | 35,1 | 32 | 20,3 |
20 | 34,8 | 68 | 20.1 | |
260 | 30,3 | 500 | 17,5 | |
Магний | 20 | 170 | 68 | 98,5 |
100 | 167 | 212 | 96,3 | |
188 | 163 | 370 | 93,9 | |
Молибден | 0 | 137 | 32 | 79,0 |
20 | 136 | 68 | 78.4 | |
427 | 115 | 800 | 66,7 | |
Монель | -250 | 20,73 | -418 | 11,98 |
20 | 27,5 | 68 | 15,86 | |
800 | 46,9 | 1472 | 27,1 | |
Никель | 20 | 62,4 | 68 | 36,0 |
100 | 58.0 | 212 | 33,5 | |
293 | 47,5 | 560 | 27,4 | |
Палладий | 20 | 67,5 | 68 | 39,0 |
Платина | 20 | 71,0 900 | 68 | 41,0 |
100 | 70,6 | 212 | 40,8 | |
427 | 69,2 | 800 | 40,0 | |
Плутоний | 20 | 8.65 | 68 | 5,00 |
Родий | 20 | 152 | 68 | 88,0 |
Серебро | 20 | 419 | 68 | 242 |
100 | 405 | 212 | 234 | |
316 | 366 | 600 | 211 | |
Сталь, 1% углерода | 20 | 45,3 | 68 | 26.2 |
100 | 44,8 | 212 | 25,9 | |
SS ANSI 301, 302, 303, 304 | 35 | 14,0 | 95 | 8,08 |
100 | 15,0 | 212 | 8,69 | |
900 | 28,0 | 1652 | 16,2 | |
SS ANSI 310 | 0 | 11,9 | 32 | 6,85 |
20 | 12.3 | 68 | 7,11 | |
900 | 32,0 | 1652 | 18,5 | |
SS ANSI 314 | 30 | 17,3 | 86 | 10,0 |
100 | 17,6 | 212 | 10,2 | |
300 | 18,4 | 572 | 10,6 | |
900 | 22,6 | 1652 | 13,1 | |
SS ANSI 316 | -50 | 13.0 | -58 | 7,51 |
20 | 13,9 | 68 | 8,04 | |
950 | 26,1 | 1742 | 15,1 | |
SS ANSI 321, 347, 348 | - 70 | 14,3 | -94 | 8,25 |
20 | 15,7 | 68 | 9,06 | |
900 | 29,4 | 1652 | 17,0 | |
SS ANSI 403, 410, 416 , 420 | -70 | 26.0 | -94 | 15,0 |
20 | 26,0 | 68 | 15,0 | |
1000 | 26,0 | 1832 | 15,0 | |
SS ANSI 430 | 50 | 21,8 | 122 | 12,6 |
900 | 25,0 | 1652 | 14,4 | |
SS ANSI 440 | 100 | 22,1 | 212 | 12.8 |
500 | 27,5 | 932 | 15,9 | |
SS ANSI 446 | 0 | 22,4 | 32 | 13,0 |
20 | 22,7 | 68 | 13,1 | |
1000 | 38,0 | 1832 | 22,0 | |
SS ANSI 501, 502 | 30 | 37,0 | 86 | 21,4 |
100 | 36.2 | 212 | 20,9 | |
830 | 27,8 | 1526 | 16,0 | |
Тантал | 20 | 55,0 | 68 | 31,8 |
Таллий | 0 | 50 | 32 | 29,0 |
Торий | 20 | 29,4 | 68 | 17,0 |
100 | 30,5 | 212 | 17.6 | |
299 | 33,3 | 570 | 19,3 | |
Олово | 20 | 62,1 | 68 | 35,9 |
100 | 58,8 | 212 | 33,9 | |
Титан | 20 | 15,6 | 68 | 9,00 |
100 | 15,3 | 212 | 8,86 | |
299 | 14.7 | 570 | 8,50 | |
Вольфрам | 20 | 159 | 68 | 92,0 |
100 | 154 | 212 | 89,2 | |
299 | 142 | 570 | 82,0 | |
Уран | 20 | 24,2 | 68 | 14,0 |
100 | 26,0 | 212 | 15,0 | |
770 | 40.6 | 1418 | 23,4 | |
Ванадий | 20 | 34,6 | 68 | 20,0 |
Цинк | 20 | 112 | 68 | 64,9 |
100 | 111 | 212 | 63,9 | |
Цирконий | 0 | 19,0 | 32 | 11,0 |
Теги статьи .
Теплопроводность выбранных материалов и газов
Теплопроводность - это свойство материала, которое описывает способность проводить тепло. Теплопроводность может быть определена как
"количество тепла, передаваемого через единицу толщины материала в направлении, нормальном к поверхности единицы площади, за счет градиента единичной температуры в условиях устойчивого состояния"
Теплопроводность единицами являются [Вт / (м · К)] в системе СИ и [БТЕ / (час фут ° F)] в британской системе мер.
См. Также изменения теплопроводности в зависимости от температуры и давления , для: воздуха, аммиака, двуокиси углерода и воды
Теплопроводность для обычных материалов и продуктов:
Теплопроводность - k - Вт / (м · К) | ||||||
---|---|---|---|---|---|---|
Материал / вещество | Температура | |||||
25 o C (77 o F) | 125 o C (257 o F) | 225 o C (437 o F) | ||||
Acetals | 0.23 | |||||
Ацетон | 0,16 | |||||
Ацетилен (газ) | 0,018 | |||||
Акрил | 0,2 | |||||
Воздух, атмосфера (газ) | 0,0262 | 0,0333 | 0,0398 | |||
Воздух, высота над уровнем моря 10000 м | 0,020 | |||||
Агат | 10,9 | |||||
Спирт | 0.17 | |||||
Глинозем | 36 | 26 | ||||
Алюминий | ||||||
Алюминий Латунь | 121 | |||||
Оксид алюминия | 30 | |||||
Аммиак (газ) | 0,0249 | 0,0369 | 0,0528 | |||
Сурьма | 18,5 | |||||
Яблоко (85.6% влаги) | 0,39 | |||||
Аргон (газ) | 0,016 | |||||
Асбестоцементная плита | 0,744 | |||||
Асбестоцементные листы | 0,166 | |||||
Асбестоцемент | 2,07 | |||||
Асбест рыхлый | 0,15 | |||||
Асбестовый картон | 0.14 | |||||
Асфальт | 0,75 | |||||
Бальзовое дерево | 0,048 | |||||
Битум | 0,17 | |||||
Слои битума / войлока | 0,5 | |||||
Говядина постная (влажность 78,9%) | 0,43 - 0,48 | |||||
Бензол | 0,16 | |||||
Бериллий | ||||||
Висмут | 8.1 | |||||
Битум | 0,17 | |||||
Доменный газ (газ) | 0,02 | |||||
Весы котла | 1,2 - 3,5 | |||||
Бор | 25 | |||||
Латунь | ||||||
Бриз | 0,10 - 0,20 | |||||
Кирпич плотный | 1.31 | |||||
Кирпич пожарный | 0,47 | |||||
Кирпич изоляционный | 0,15 | |||||
Кирпичная кладка обыкновенная (строительный кирпич) | 0,6 -1,0 | |||||
Кирпичная кладка , плотная | 1,6 | |||||
Бром (газ) | 0,004 | |||||
Бронза | ||||||
Коричневая железная руда | 0.58 | |||||
Масло (влажность 15%) | 0,20 | |||||
Кадмий | ||||||
Силикат кальция | 0,05 | |||||
Углерод | 1,7 | |||||
Двуокись углерода (газ) | 0,0146 | |||||
Окись углерода | 0,0232 | |||||
Чугун | ||||||
Целлюлоза, хлопок, древесная масса и регенерированная | 0.23 | |||||
Ацетат целлюлозы, формованный, лист | 0,17 - 0,33 | |||||
Нитрат целлюлозы, целлулоид | 0,12 - 0,21 | |||||
Цемент, Портленд | 0,29 | |||||
Цемент, строительный раствор | 1,73 | |||||
Керамические материалы | ||||||
Мел | 0.09 | |||||
Древесный уголь | 0,084 | |||||
Хлорированный полиэфир | 0,13 | |||||
Хлор (газ) | 0,0081 | |||||
Хром никелевая сталь | 16,3 | |||||
Хром | ||||||
Оксид хрома | 0,42 | |||||
Глина, от сухой до влажной | 0.15 - 1,8 | |||||
Глина насыщенная | 0,6 - 2,5 | |||||
Уголь | 0,2 | |||||
Кобальт | ||||||
Треск (влажность 83% содержание) | 0,54 | |||||
Кокс | 0,184 | |||||
Бетон, легкий | 0,1 - 0,3 | |||||
Бетон, средний | 0.4 - 0,7 | |||||
Бетон, плотный | 1,0 - 1,8 | |||||
Бетон, камень | 1,7 | |||||
Константан | 23,3 | |||||
Медь | ||||||
Кориан (керамический наполнитель) | 1,06 | |||||
Пробковая плита | 0,043 | |||||
Пробка, повторно гранулированная | 0.044 | |||||
Пробка | 0,07 | |||||
Хлопок | 0,04 | |||||
Вата | 0,029 | |||||
Углеродистая сталь | ||||||
Утеплитель из шерсти | 0,029 | |||||
Купроникель 30% | 30 | |||||
Алмаз | 1000 | |||||
Диатомовая земля (Sil-o-cel) | 0.06 | |||||
Диатомит | 0,12 | |||||
Дуралий | ||||||
Земля, сухая | 1,5 | |||||
Эбонит | 0,17 | |||||
11,6 | ||||||
Моторное масло | 0,15 | |||||
Этан (газ) | 0.018 | |||||
Эфир | 0,14 | |||||
Этилен (газ) | 0,017 | |||||
Эпоксидный | 0,35 | |||||
Этиленгликоль | 0,25 | Перья | 0,034 | |||
Войлок | 0,04 | |||||
Стекловолокно | 0.04 | |||||
Волокнистая изоляционная плита | 0,048 | |||||
Древесноволокнистая плита | 0,2 | |||||
Огнеупорный кирпич 500 o C | 1,4 | |||||
Фтор (газ) | 0,0254 | |||||
Пеностекло | 0,045 | |||||
Дихлордифторметан R-12 (газ) | 0.007 | |||||
Дихлордифторметан R-12 (жидкость) | 0,09 | |||||
Бензин | 0,15 | |||||
Стекло | 1.05 | |||||
Стекло, жемчуг, жемчуг | 0,18 | |||||
Стекло, жемчуг, насыщенное | 0,76 | |||||
Стекло, окно | 0.96 | |||||
Стекло-вата Изоляция | 0,04 | |||||
Глицерин | 0,28 | |||||
Золото | ||||||
Гранит | 1,7 - 4,0 | |||||
Графит | 168 | |||||
Гравий | 0,7 | |||||
Земля или почва, очень влажная зона | 1.4 | |||||
Земля или почва, влажная зона | 1,0 | |||||
Земля или почва, сухая зона | 0,5 | |||||
Земля или почва, очень сухая зона | 0,33 | |||||
Гипсокартон | 0,17 | |||||
Волос | 0,05 | |||||
ДВП высокой плотности | 0.15 | |||||
Лиственных пород (дуб, клен ..) | 0,16 | |||||
Hastelloy C | 12 | |||||
Гелий (газ) | 0,142 | |||||
Мед ( 12,6% влажности) | 0,5 | |||||
Соляная кислота (газ) | 0,013 | |||||
Водород (газ) | 0,168 | |||||
Сероводород (газ) | 0.013 | |||||
Лед (0 o C, 32 o F) | 2,18 | |||||
Инконель | 15 | |||||
Чугун | 47-58 | |||||
Изоляционные материалы | 0,035 - 0,16 | |||||
Йод | 0,44 | |||||
Иридий | 147 | |||||
Железо | ||||||
Оксид железа | 0 .58 | |||||
Капок изоляция | 0,034 | |||||
Керосин | 0,15 | |||||
Криптон (газ) | 0,0088 | |||||
Свинец | ||||||
, сухой | 0,14 | |||||
Известняк | 1,26 - 1,33 | |||||
Литий | ||||||
Магнезиальная изоляция (85%) | 0.07 | |||||
Магнезит | 4,15 | |||||
Магний | ||||||
Магниевый сплав | 70-145 | |||||
Мрамор | 2,08 - 2,94 | |||||
Ртуть, жидкость | ||||||
Метан (газ) | 0,030 | |||||
Метанол | 0.21 | |||||
Слюда | 0,71 | |||||
Молоко | 0,53 | |||||
Изоляционные материалы из минеральной ваты, шерстяные одеяла .. | 0,04 | |||||
Молибден | ||||||
Монель | ||||||
Неон (газ) | 0,046 | |||||
Неопрен | 0.05 | |||||
Никель | ||||||
Оксид азота (газ) | 0,0238 | |||||
Азот (газ) | 0,024 | |||||
Закись азота (газ) | 0,0151 | |||||
Нейлон 6, Нейлон 6/6 | 0,25 | |||||
Масло машинное смазочное SAE 50 | 0,15 | |||||
Оливковое масло | 0.17 | |||||
Кислород (газ) | 0,024 | |||||
Палладий | 70,9 | |||||
Бумага | 0,05 | |||||
Парафиновый воск | 0,25 | Торф | 0,08 | |||
Перлит, атмосферное давление | 0,031 | |||||
Перлит, вакуум | 0.00137 | |||||
Фенольные литые смолы | 0,15 | |||||
Формовочные смеси фенолформальдегид | 0,13 - 0,25 | |||||
Фосфорбронза | 110 | Pinchbe20 159 | ||||
Шаг | 0,13 | |||||
Карьерный уголь | 0.24 | |||||
Гипс светлый | 0,2 | |||||
Гипс, металлическая планка | 0,47 | |||||
Гипс песочный | 0,71 | |||||
Гипс, деревянная планка | 0,28 | |||||
Пластилин | 0,65 - 0,8 | |||||
Пластмассы вспененные (изоляционные материалы) | 0.03 | |||||
Платина | ||||||
Плутоний | ||||||
Фанера | 0,13 | |||||
Поликарбонат | 0,19 | |||||
Полиэстер | ||||||
Полиэтилен низкой плотности, PEL | 0,33 | |||||
Полиэтилен высокой плотности, PEH | 0.42 - 0,51 | |||||
Полиизопреновый каучук | 0,13 | |||||
Полиизопреновый каучук | 0,16 | |||||
Полиметилметакрилат | 0,17 - 0,25 | Полипропилен | 0,1 - 0,22||||
Полистирол вспененный | 0,03 | |||||
Полистирол | 0.043 | |||||
Пенополиуретан | 0,03 | |||||
Фарфор | 1,5 | |||||
Калий | 1 | |||||
Картофель, сырая мякоть | 0,55 | |||||
Пропан (газ) | 0,015 | |||||
Политетрафторэтилен (ПТФЭ) | 0,25 | |||||
Поливинилхлорид, ПВХ | 0.19 | |||||
Стекло Pyrex | 1,005 | |||||
Кварц минеральный | 3 | |||||
Радон (газ) | 0,0033 | |||||
Красный металл | ||||||
Рений | ||||||
Родий | ||||||
Порода, твердая | 2-7 | |||||
Порода, вулканическая порода (туф) | 0.5 - 2,5 | |||||
Изоляция из каменной ваты | 0,045 | |||||
Канифоль | 0,32 | |||||
Резина, ячеистая | 0,045 | |||||
Резина натуральная | 0,13 | |||||
Рубидий | ||||||
Лосось (влажность 73%) | 0,50 | |||||
Песок сухой | 0.15 - 0,25 | |||||
Песок влажный | 0,25 - 2 | |||||
Песок насыщенный | 2-4 | |||||
Песчаник | 1,7 | |||||
Опилки | 0,08 | |||||
Селен | ||||||
Овечья шерсть | 0,039 | |||||
Аэрогель кремнезема | 0.02 | |||||
Силиконовая литая смола | 0,15 - 0,32 | |||||
Карбид кремния | 120 | |||||
Кремниевое масло | 0,1 | |||||
Серебро | ||||||
Шлаковая вата | 0,042 | |||||
Сланец | 2,01 | |||||
Снег (температура <0 o C) | 0.05 - 0,25 | |||||
Натрий | ||||||
Хвойные породы (пихта, сосна ..) | 0,12 | |||||
Почва, глина | 1,1 | |||||
Почва, с органическими материя | 0,15 - 2 | |||||
Грунт насыщенный | 0,6 - 4 | |||||
Припой 50-50 | 50 | |||||
Сажа | 0.07 | |||||
Насыщенный пар | 0,0184 | |||||
Пар низкого давления | 0,0188 | |||||
Стеатит | 2 | |||||
Сталь углеродистая | ||||||
Сталь, нержавеющая сталь | ||||||
Изоляция соломенной плиты, сжатая | 0,09 | |||||
Пенополистирол | 0.033 | |||||
Диоксид серы (газ) | 0,0086 | |||||
Сера кристаллическая | 0,2 | |||||
Сахара | 0,087 - 0,22 | |||||
Тантал | ||||||
Смола | 0,19 | |||||
Теллур | 4,9 | |||||
Торий | ||||||
Древесина, ольха | 0.17 | |||||
Древесина, ясень | 0,16 | |||||
Древесина, береза | 0,14 | |||||
Древесина, лиственница | 0,12 | |||||
Древесина, клен | 0,16 | |||||
Древесина дубовая | 0,17 | |||||
Древесина осина | 0,14 | |||||
Древесина оспа | 0.19 | |||||
Древесина, бук красный | 0,14 | |||||
Древесина, сосна красная | 0,15 | |||||
Древесина, сосна белая | 0,15 | |||||
Древесина ореха | 0,15 | |||||
Олово | ||||||
Титан | ||||||
Вольфрам | ||||||
Уран | ||||||
Пенополиуретан | 0.021 | |||||
Вакуум | 0 | |||||
Гранулы вермикулита | 0,065 | |||||
Виниловый эфир | 0,25 | 0,606 | ||||
Вода, пар (пар) | 0,0267 | 0,0359 | ||||
Пшеничная мука | 0.45 | |||||
Белый металл | 35-70 | |||||
Древесина поперек волокон, белая сосна | 0,12 | |||||
Древесина поперек волокон, бальза | 0,055 | |||||
Древесина поперек волокон, сосна желтая, древесина | 0,147 | |||||
Дерево, дуб | 0,17 | |||||
Шерсть, войлок | 0.07 | |||||
Древесная вата, плита | 0,1 - 0,15 | |||||
Ксенон (газ) | 0,0051 | |||||
Цинк |
Пример - Проводящая теплопередача через Алюминиевый горшок и горшок из нержавеющей стали
Кондуктивная теплопередача через стенку горшка может быть рассчитана как
q = (к / с) A dT (1)
или
q / A = (к / с) dT
где
q = теплопередача (Вт, БТЕ / ч)
A = площадь поверхности (м 2 , фут 2 )
q / A = теплопередача на единицу площади (Вт / м 2 , Btu / (h ft 2 ))
k = среднеквадратичная проводимость (Вт / мК, БТЕ / (час фут ° F) )
dT = t 1 - t 2 = разница температур ( o C, o F)
s = толщина стенки (м, фут)
Калькулятор теплопроводности
k = теплопроводность (Вт / мК, БТЕ / (час фут ° F) )
s = толщина стенки (м, фут)
A = площадь поверхности (м 2 , фут 2 )
dT = t 1 - t 2 = разница температур ( o C, или F)
Примечание! - общая теплопередача через поверхность определяется « общим коэффициентом теплопередачи », который в дополнение к кондуктивной теплопередаче зависит от
Кондуктивная теплопередача через алюминиевую стенку горшка толщиной 2 мм - разность температур 80 o C
Коэффициент теплопроводности для алюминия составляет 215 Вт / (м · К) (из таблицы выше).Кондуктивная теплопередача на единицу площади может быть рассчитана как
q / A = [(215 Вт / (м · K)) / (2 10 -3 м)] (80 o C)
= 8600000 (Вт / м 2 )
= 8600 (кВт / м 2 )
Кондуктивная теплопередача через стенку емкости из нержавеющей стали толщиной 2 мм - разница температур 80 o C
Теплопроводность для нержавеющей стали 17 Вт / (м · К) (из таблицы выше).Кондуктивная теплопередача на единицу площади может быть рассчитана как
q / A = [(17 Вт / (м · K)) / (2 10 -3 м) ] (80 o C)
= 680000 (Вт / м 2 )
= 680 (кВт / м 2 )
.Теплопроводность (закон Фурье) - tec-science
- Дом
- Механика
- Газы и жидкости
- Химия
- Структура вещества
- Атомарные модели
- Химические связи
- Материаловедение
- Структура металлов
- Пластичность металлов
- Затвердевание металлов
- Сплавы
- Сталеплавильное производство
- Фазовая диаграмма железо-углерод
- Термическая обработка сталей
- Испытания материалов
- Механическая трансмиссия
- Основы
- Типы шестерен
- Ременная передача
- Планетарная передача
- Циклоидальный привод
- Эвольвентная шестерня
- Циклоидальная передача
- Термодинамика
- Температура
- Кинетическая теория газов
- Тепло
- Оптика
- Оптика
Войти
.