Что такое сплавы металлов


строение, механические и химические свойства

Работать с металлами человек начал в 4 тысячелетии. В истории, века ознакомления с новыми видами металлов названы в честь них — Бронзовый, Железный, Чугунный. Однако, в природе невозможно найти ни одного металлического изделия, которое будет на 100% состоять из одного вида металла. В изготавливаемых предметах, деталях или конструкциях есть добавки которые ввёл сам человек или они попали туда естественным путем. Из-за этого можно утверждать, что все представленные материалы металлического происхождения это сплавы металлов.

Расплавленный металл

Основные определения

Людям, работающим в сфере металлообработки, необходимо знать строение металлов и сплавов, чтобы понимать как происходят те или иные процессы в ходе обработки. Металлические материалы образую группу простых веществ, которые имеют собственные характерные свойства.

Структура представляет собой совокупность атомов, которые выстраиваются в отдельные ячейки. Ячейки, в свою очередь, объединяются между собой, образуя кристаллическую решётку. Внутреннюю часть решётки образуют атомные ядра. Вокруг них располагаются электроны. Кристаллическая решётка представляет собой совокупность простых геометрических форм.

Свойства металлов

Эту группу веществ определяют по характерным признакам. Механические свойства алюминия, стали, железа, свинца, олова и других видов металлов давно известны науке:

  1. Твёрдость — этот параметр определяет устойчивость материала к проникновению посторонних примесей.
  2. Пластичность — показатель, определяющий сохранение формы предмета под воздействием посторонних сил.
  3. Вязкость — определяет целостность изделия под физическим давлением.
  4. Прочность — показатель сохранения формы материала после воздействия извне.
  5. Износоустойчивость — изменение поверхности материла после трения.
  6. Упругость — изменение формы детали или заготовки с возможностью самостоятельного восстановления к изначальному состоянию.

Среди дополнительных свойств выделяют устойчивость к воздействию высоких температур и холода, а также температуру плавления. К химическим свойствам можно отнести возможность контактировать с другими веществами.

Признаки металлов

Изначально считалось, что металлы и сплавы обладают тремя характерными признаками — ковкость, пластичность и блеск. Однако оказалось, что некоторые неметаллические вещества также обладают блеском. Сейчас главным признаком металла считается понижение электропроводности при изменении температуры.

В природе существует несколько видов металлов, которые отличаются по своим свойствам, характеристикам и внешнему виду. Каждая из разновидностей по-разному ведёт себя при взаимодействии с другими материалами или под воздействием факторов окружающей среды.

Виды металлов

Черные

В эту группу входит железо и сплавы на его основе. Характерные особенности чёрных металлов:

  • высокая плотность;
  • температура плавления гораздо выше чем у представителей других групп;
  • цвет — тёмно-серый.

К представителям группы чёрных металлов относятся: вольфрам, хром, кобальт, молибден, железо, никель, титан, марганец, уран, нептуний, плутоний и другие. Используются они в различных отраслях и обладают разными свойствами. Популярными считаются сталь и чугун.

В состав черных металлов входит не только железо, но и различные примеси к которым относится сера, фосфор или кремний. В своём составе они содержат разное количество углерода.

Цветные

Представители этой группы более востребованы. Связано это с тем, что цветные металлы применяют в большем количестве отраслей. Их могут использовать в машиностроении, передовых технологиях, радиоэлектронике, металлургии. Ключевые особенности цветных металлов:

  • низкая температура плавления;
  • большой цветовой спектр;
  • хорошая пластичность.

Из-за низкой прочности представителей цветной группы их используют в связке с разными видами более плотных материалов. Представители этой группы: магний, алюминий, никель, свинец, олово, цинк, серебро, платина, родий, золото и другие.

Мягкие

Можно выделить отдельные виды металлов, которые будут относиться к группе твёрдых и мягких. В качестве мягких выступают:

  1. Алюминий — обладает устойчивостью к коррозии, легким весов, хорошей пластичностью. Используется в электропромышленности, при строительстве самолётов и изготовлении посуды.
  2. Магний — это лёгкий материал, который подвержен воздействию коррозийных процессов. Чтобы избавиться от этого недостатка, его используют в сплавах с другими материалами.

Это ключевые представители группы мягких металлов.

Твердые

Популярными материалами этой группы являются:

  1. Вольфрам — считается самым тугоплавким металлом. Дополнительно к этому, он является одним из самых прочных. Стойкий к химическим воздействиям.
  2. Титан — чем меньше вкраплений других материалов в этом металле, тем прочнее он становится. Используется при строительстве машин, ракет, самолётов, кораблей, а также в химической промышленности. Он хорошо обрабатываются под давлением, не поддается воздействию коррозийных процессов.
  3. Уран — ещё один металл, считающийся одним из самых прочных в мире. Радиоактивен и используется в различных направлениях промышленности.

Представители «твёрдой группы» хуже поддаются обработке и используются в меньшем количестве направлений деятельности человека, чем мягкие.

Основные виды сплавов

Существуют различные виды сплавов металлов, однако стоит поговорить только об основных.

Самыми популярными считаются составы на основе железа. К ним относится сталь, чугун и ферриты. Если с первыми двумя сплавами всё понятно, то стоит кратко сказать о том, что такое ферриты. Это соединения металлов, в которых содержится большое количество углерода. Их используют для изготовления катушек индуктивности. Также стоит упомянуть другие основные сплавы металлов.

Изделия выполненные из металлических сплавов

Магниевые сплавы

Обладают высокой прочностью при малом размере и массе заготовки. Слабо защищены от коррозии, не обладают достаточной пластичностью для удобной обработки. Используются в машиностроении. Главная особенность сплавов на основе магния — свойство поглощать вибрации подвижных элементов.

Бериллиевые сплавы

Устойчивы к коррозийным процессам. Бериллий чаще всего смешивается с медью. Такая смесь называется Бериллиевой бронзой. Её используют для изготовления шестерней, контактов, часовых механизмов, подшипников.

Цинковые сплавы

Особенности этих соединений заключаются в низкой температуре плавления, высоким показателе пластичности, устойчивости к коррозиям. Используются для изготовления подшипников, бытовой техники, в машиностроении.

Титановые сплавы

Тяжелый в обработке материал. Сплавы на его основе обладают малым весом, высокой прочностью, стойкостью к воздействию факторов окружающей среды. Чтобы облегчить обработку металла, его необходимо нагреть. Используется в различных направлениях промышленности.

Алюминиевые сплавы

Сплавы на основе этого материала считаются наиболее популярными. Встретить их можно в большинстве сфер жизни человека. У них такие преимущества:

  • коррозийная устойчивость;
  • малый вес;
  • пластичность;
  • электропроводность.

Главный недостаток этого материала — низкая температура плавления. Уже к 200 градусам, свойства сплава ухудшаются. Алюминиевые сплавы используются в различных направлениях промышленности. Благодаря малому удельному весу алюминий получил большую популярность в строительстве самолётов.

Медные сплавы

Большинство соединений на основе меди представляют собой латунь. В зависимости от содержания меди в составе сплава выделяется красная и жёлтая латунь. Из этого материала изготавливаются маленькие детали для высокоточных и миниатюрных механизмов. Обладает высоким показателем пластичности, благодаря чему с соединениями на основе меди легко работать.

Распространение сплавов в современной промышленности

Выделяют следующие направления промышленности, в которых используются сплавы:

  1. Изготовление измерительных приборов.
  2. Ювелирное дело. Изготовление украшений.
  3. Постройка ракет, кораблей, самолётов. Машиностроение.
  4. Создание контактов, микросхем, точных соединений.
  5. Производство оружия.
  6. Аэрокосмическая промышленность.
  7. Криогенная область.
  8. Изготовление медицинского оборудования.
  9. Ядерная физика (детали для реакторов).
  10. Химическая и пищевая промышленность.

Это направления применения металлов и их сплавов в промышленности. Металлы и сплавы можно найти в любых сферах жизни. Каждое соединение обладает своими свойствами и характеристиками, которые изменяются по мере добавления посторонних примесей в состав.

Какие они? Из чего делают обычные сплавы?

Криса Вудфорда. Последнее изменение: 12 октября 2020 г.

Практически любой материал мы могли бы когда-нибудь захотеть скрывается где-то на планете под нашим ноги. От золота, которое мы носим как украшения, до нефть, которая питает наши автомобили, земной кладезь удивительных материалов может обеспечить практически каждая потребность. Химические элементы - это основные строительные блоки из из которых сделаны все материалы внутри Земли. Их около 90 природные элементы, большинство из которых - металлы.Но, хотя металлы и полезны, иногда они не идеальны для работы, которая нам нужна. Возьмем, к примеру, железо. Это удивительно прочный, но может быть довольно хрупким и ржавеет легко во влажном воздухе. Или как насчет алюминия. Он очень легкий, но в своем в чистом виде, он слишком мягкий и слабый, чтобы от него было много пользы. Поэтому большинство используемых нами "металлов" не вообще металлы, кроме сплавов: металлы в сочетании с другими веществами, чтобы сделать их сильнее, тверже, легче или лучше каким-нибудь другим способом.Сплавы повсюду вокруг нас - от пломбы в наши зубы и литые диски на наших автомобилях к космическим спутникам свист над нашими головами. Давайте подробнее рассмотрим, что это такое и почему они такие полезно!

Фото: Этот топливный бак от Space Shuttle был сделан из сверхлегкого алюминиево-литиевого сплава, так что это на целых 3400 кг (7500 фунтов) легче, чем бак, который он заменил. Уменьшение веса базовой конструкции шаттла означало, что он мог нести более тяжелую полезную нагрузку (груз).Фото любезно предоставлено Космическим центром Кеннеди НАСА (NASA-KSC).

Что такое сплав?

Фото: Этот образец сплава титан-цирконий-никель представляет собой заставляют левитировать (парить в воздухе) с помощью электричества. Это один из многих замечательных новых материалов, которые разрабатываются для возможного использования в космосе. Фото любезно предоставлено Центром космических полетов им. Маршалла НАСА (NASA-MSFC).

Вы могли встретить слово сплав, описанное как «смесь металлов», но это немного вводит в заблуждение, потому что некоторые сплавы содержат только один металл, и он смешан с другие вещества, не являющиеся металлами (например, чугун сплав из одного металла, железа, смешанного с одним неметаллом, углеродом).Лучше всего думать о сплаве как о материале, состоящем из минимум два разных химических элемента, один из которых - металл. В самый важный металлический компонент сплава (часто представляющий 90 процентов или более материала) называется основным металл, основной металл или основание металл. Остальные компоненты сплава (которые называются легирующими добавками) может быть металлы или неметаллы, и они присутствуют в гораздо меньших количествах (иногда менее 1 процента от общей суммы). Хотя сплав иногда может быть составным (элементы, из которых он сделан, химически связаны вместе), обычно это твердый решение (атомы элементов просто перемешаны, как соль, смешанная с вода).

Состав сплавов

Если вы посмотрите на металл в мощный электронный микроскоп, вы увидите атомы внутри расположены в регулярной структуре, называемой кристаллической решетка. Представьте себе небольшую картонную коробку, полную шариков, и это довольно много. что бы вы увидели. В сплаве, кроме атомов основного металла, есть также атомы легирующих добавок, разбросанных по всему состав. (Представьте, что вы уронили несколько пластиковых шарики в картон коробка, чтобы они случайным образом расположились среди шариков.)

Изображение: Замещающие сплавы и промежуточные сплавы: На этих диаграммах черные кружки представляют основной металл, а красные кружки - легирующие добавки.

Сплавы замещения

Если атомы легирующего агента заменяют атомы основного металла, мы получаем то, что называется замещающий сплав. Такой сплав сформируется только в том случае, если атомы основного металла и легирующего агента имеют примерно такого же размера. В большинстве сплавов замещения составляющая элементы очень близко друг к другу в периодической таблице.Латунь, для Например, сплав на основе меди в какие атомы цинка заменяют 10–35 процентов атомов, которые обычно находятся в меди. Латунь работает как сплав, потому что медь и цинк близки друг к другу в периодической таблицы и имеют атомы примерно одинакового размера.

Сплавы внедрения

Сплавы также могут образовываться, если легирующий агент или агенты имеют атомы, которые намного меньше чем у основного металла. В этом случае атомы агента проскальзывают в между основными атомами металла (в зазорах или «пустотах»), давая так называемый межузельный сплав.Сталь - это пример сплава внедрения, в котором относительно небольшое количество атомы углерода проникают внутрь промежутки между огромными атомами в кристаллической решетке железа.

Как ведут себя сплавы?

Фото: это не только основные ингредиенты (металлы и другие составляющие). влияющие на свойства сплава; как эти ингредиенты сочетаются очень важно слишком. Скорость разливки или перемешивания, температура разливки и скорость охлаждения являются некоторыми из факторов. что может повлиять на физические свойства сплавов.Фотография отливки из латунного сплава, сделанная Джетом Лоу, любезно предоставлена ​​Библиотекой Конгресса США, Отделом эстампов и фотографий, Historic American Engineering Record.

Люди делают и используют сплавы, потому что металлы не имеют подходящие свойства для конкретная работа. Железо - отличное здание материал, но сталь (сплав получается путем добавления небольшого количества неметаллического углерода к железу) прочнее, тверже и устойчивее к ржавчине. Алюминий - очень легкий металл, но он также очень мягкий в чистом виде. Добавьте небольшое количество металлов магний, марганец и медь, и вы получите превосходный алюминиевый сплав называется дюралюминий, который достаточно силен для изготовления самолетов.Сплавы всегда показывают улучшения по сравнению с основным металлом в одном или нескольких своих важные физические свойства (такие как прочность, долговечность, способность проводить электричество, способность выдерживать жару, и так на). Как правило, сплавы прочнее и тверже, чем их основные металлы, менее пластичные (труднее работать) и менее пластичные (труднее втягиваем в провода).

Таблица

: Один и тот же основной металл может давать очень разные сплавы, когда он смешивается с другими элементами. Вот четыре примера медных сплавов.Хотя медь является основным металлом во всех них, каждый из них обладает совершенно разными свойствами.

Фото: Ученые NASA Ames разработали методику называется распылением газа под высоким давлением для упрощения производства магниевые сплавы. Фото любезно предоставлено Министерством энергетики США.

Как изготавливаются сплавы?

Представление о сплаве как о "смеси металлов" может сбивает с толку. Как можно ли смешать два куска твердого металла? Традиционный способ изготовление сплавов заключалось в нагревании и плавлении компонентов для получения жидкостей, смешайте их вместе, а затем дайте им остыть до состояния, называемого твердый раствор (твердый эквивалент раствор как соль в воде).Альтернативный способ изготовления сплава - повернуть компоненты в порошки, смешайте их вместе, а затем соедините их с сочетание высокого давления и высокой температуры. Эта техника называется порошковой металлургией. Третий метод изготовление сплавов стрелять пучками ионов (атомов со слишком малым или слишком большим количеством электронов) в поверхностный слой куска металла. Ион Имплантация, как это известно, является очень точным способом изготовления сплава. Это вероятно, наиболее известен как способ изготовления полупроводников, используемых в электронные схемы и компьютерные микросхемы.(Подробнее об этом читайте в нашей статье о молекулярно-лучевой эпитаксии.)

Узнать больше

На этом сайте

Статьи

Книги

Общие сведения о материаловедении и инженерии

В этих книгах объясняется основная концепция подбора материалов для работы, которую они должны выполнять. Это основная идея большинства сплавов - по сути, металлы «улучшены», чтобы выполнять определенные задачи лучше, чем в чистом, естественном состоянии.

Более подробные книги

Достаточно сложно найти простые общие книги по сплавам; вместо этого ищите книги по «инженерным материалам», и вы найдете что-нибудь подходящее.

Организации

Пожалуйста, НЕ копируйте наши статьи в блоги и другие веб-сайты

статей с этого сайта зарегистрированы в Бюро регистрации авторских прав США. Копирование или иное использование зарегистрированных работ без разрешения, удаление этого или других уведомлений об авторских правах и / или нарушение смежных прав может привести к серьезным гражданским или уголовным санкциям.

Авторские права на текст © Chris Woodford 2008, 2020. Все права защищены. Полное уведомление об авторских правах и условиях использования.

Inconel является зарегистрированным товарным знаком Huntington Alloys Corporation
Monel является зарегистрированным товарным знаком International Nickel Co.
Waspaloy является зарегистрированным товарным знаком United Technologies Corporation
Hastelloy является зарегистрированным товарным знаком Haynes International, Inc.
Названия определенных сплавов CMSX ( такие как CMSX-4) являются зарегистрированными товарными знаками Cannon-Muskegon Corporation.

.

Что такое металлические сплавы? | MATSE 81: Материалы в современном мире

Щелкните здесь, чтобы просмотреть стенограмму видеоролика «Свойства вещества: сплавы и их свойства».

В этом видео мы видим, как разные металлы соединяются вместе, образуя сплавы, которые по-прежнему сохраняют металлические свойства исходных металлов, но обычно более прочные. Типичным примером атомов металлов является наличие всего нескольких электронов во внешних оболочках. Это означает, что даже когда они связываются, в этой валентной оболочке всегда остается место для большего количества электронов.Каждый атом металла может связываться с 12 другими атомами в плотноупакованной решетке. Посмотрите на красный атом. Он окружен шестью в своей плоскости, тремя сверху и тремя снизу.

Возможны и менее компактные кристаллические структуры. Например, это расположение, где каждый атом связан с восемью другими. Поскольку все еще недостаточно электронов, чтобы завершить внешнюю оболочку любого из атомов, электроны могут легко перемещаться от одного атома к другому, делая металлы хорошими проводниками как электричества, так и тепла.А поскольку электроны не локализованы в фиксированных связях, атомы могут скользить мимо друг друга, делая их пластичными, позволяя металлу изменять форму. Это также означает, что когда вы пытаетесь взаимодействовать с металлами вместе, атомы обычно просто смешиваются в решетке, образуя металлические связи друг с другом, без фиксированных пропорций и случайным образом распределенных. Эти структуры называются сплавами. Сравните это с соединениями между металлами и неметаллами или между неметаллическими элементами, где пропорции каждого элемента фиксированы.

Самым древним примером сплава, возможно, является то, как бронза пришла на смену меди в древних человеческих сообществах Европы около 6000 лет назад. В конце каменного века топоры стали делать из чистой меди, но они были довольно мягкими. Когда для изготовления бронзы добавлялось небольшое количество олова, получался топор, который был вдвое тяжелее и работал хорошо. Наступил бронзовый век. Атомы в металлической решетке удерживаются ненаправленными связями, что-то вроде моря свободных электронов, как мы уже говорили, позволяя атомам скользить мимо друг друга, все еще соприкасаясь, что делает металлы относительно легко плавящимися и изгибающимися, но трудно испаряемыми.Когда металлы меняют форму, атомы фактически скользят друг по другу вот так. Однако этот процесс не происходит сразу, а постепенно напоминает попытку сдвинуть ковер, вставив в него камень.

Вот как это происходит в металле. Вы видите, как скольжение легко перемещается по одному атому за раз, когда в решетке есть дислокация. Именно это легкое движение атомов в кристаллической решетке делает самый чистый металл мягким. Теперь поместите в решетку атом большего или меньшего размера, и это легкое движение дислокации будет заблокировано.Посмотрите, как более крупный атом стабилизирует дислокацию, которая не продвинется дальше, если вы не приложите большую силу, что означает, что сплав сложнее согнуть.

В завершение рассмотрим некоторые известные сплавы. Бронза, три четверти меди, четверть олова, для скульптур, лодочного оборудования, винтов и решеток. Латунь 70 процентов меди, 30 процентов цинка. Музыкальные инструменты, монеты, дверные молотки. Углеродистая сталь 99 процентов железа и до одного процента углерода. Строительство зданий, инструменты, автомобильные кузова, рельсы для машин и т. Д.нержавеющая сталь с содержанием хрома около 18 процентов и никеля на восемь процентов. Используется для посуды, кухонной посуды, хирургических инструментов и т. Д. Алюминиевые сплавы для самолетов содержат несколько процентов меди или других металлов. Амальгама - это ртуть с серебром и другими металлами. Когда-то использовался для пломбирования зубов. Свинцовый припой и олово для соединения электрических проводов и компонентов. Очень легко плавится. Золото обычно представляет собой сплав, содержащий другой металл, например серебро, для повышения твердости. Количество каратов k определяет, сколько массовых частей чистого золота содержится в 24 частях сплава.

.

Что такое легированный металл? - A Plus Topper

Что такое легированный металл?

  1. Сплав представляет собой смесь двух или более элементов с определенным фиксированным составом, в котором основным компонентом должен быть металл .
  2. В процессе изготовления сплавов в расплавленный металл добавляют один или несколько посторонних элементов. Таким образом, позиции некоторых атомов металла заменяются атомами постороннего металла, которые могут быть больше или меньше.
  3. Эти посторонних атомов разного размера нарушают упорядоченное расположение металлов.Таким образом улучшаются свойства чистого металла.
  4. Сплавы прочнее, тверже, устойчивее к коррозии, имеют лучшую отделку и более блестящие, чем их чистый металл.
  5. Большинство сплавов представляют собой смесь металлов. Некоторые сплавы могут содержать смесь металла и неметалла.
    Пример:
    (a) Латунь представляет собой смесь меди и цинка.
    (b) Сталь представляет собой смесь железа и углерода.
    (c) Нержавеющая сталь представляет собой смесь железа, углерода и хрома.
  6. Изменяя процентный состав металлов, можно изменять свойства получаемого сплава.

Зачем производятся сплавы?

Цели производства сплавов:

Три цели изготовления сплава:
(a) Повышение прочности и твердости чистого металла
(b) Повышение коррозионной стойкости чистого металла
( в) Для улучшения внешнего вида чистого металла

  1. Для повышения прочности и твердости чистого металла.
    (a) Во время легирования небольшое количество атомов другого элемента добавляется к расплавленному чистому металлу.Когда сплав становится твердым, позиции одного атома чистого металла заменяются атомами другого элемента другого размера.
    (b) Присутствие этих посторонних атомов разного размера нарушает упорядоченное расположение атомов в чистом металле.
    (c) Это уменьшает скольжение слоев атомов друг по другу и делает сплавы более твердыми и прочными, чем чистые металлы.
    (d) Например, когда атомы углерода добавляются к железу для образования стали, атомы углерода, размер которых меньше, чем атомы железа, нарушают упорядоченное расположение атомов железа, что затрудняет скольжение слоев атомов друг по другу.Это делает сталь тверже чистого железа.
  2. Для повышения коррозионной стойкости чистого металла
    (a) Большая часть металла легко разъедает на воздухе. Это потому, что они реагируют с кислородом и водяным паром в воздухе.
    (b) Легирование предотвращает коррозию металлов. Это связано с тем, что легирование помогает предотвратить образование оксидного слоя на поверхности металла.
    (c) Например, углерод, хром и никель добавляют в железо для получения нержавеющей стали.Столовые приборы из нержавеющей стали не подвержены коррозии.
  3. Для улучшения внешнего вида чистого металла
    (a) Металлы имеют блестящую поверхность. Однако из-за образования матового оксида металла на поверхности металла он быстро теряет свой блеск.
    (b) Легирование помогает сохранить блестящую поверхность металла, поскольку предотвращает образование оксида металла.
    (c) Например, в олово добавляются атомы сурьмы и меди, в результате чего олово имеет более блестящую поверхность, чем олово.

Люди также спрашивают

Список сплавов, их состав и использование

Состав, свойства и использование сплавов:

  1. Сегодня многие сплавы были открыты и улучшаются путем изменения их процентного содержания сочинение.
  2. Использование каждого типа сплавов зависит от свойств сплава.
  3. В таблице показаны состав, свойства и применение некоторых сплавов.
Сплав Состав Свойства Применение
Бронза 80% меди, 20% олово Твердый, прочный, не подверженный коррозии, блестящая поверхность Медали, статуи , художественные материалы
Латунь 70% меди, 30% цинка Тверже меди, блестящая поверхность Музыкальные инструменты, посуда, дверные ручки, гильзы для пуль, декоративные украшения, электрические детали.
Медно-никель 75% меди, 25% никель Красивая поверхность, блестящая, твердая, не подвержена коррозии Монета
Сталь 99% железа, 1% углерода Твердый, прочные Здания, мосты, кузова вагонов, железнодорожные пути

Нержавеющая сталь

74% железо, 8% углерод, 18% хром Блестящий, прочный, не ржавеет Столовые приборы, раковины , трубы, хирургические инструменты
Дюралюминий 93% алюминий, 3% медь, 3% магний, 1% марганец Легкие, прочные Самолеты, сверхскоростные поезда, гоночные велосипеды
Pewter 96% олово, 3% медь, 1% сурьма Блестящий, прочный, не коррозирует Предметы искусства, сувениры
Припой 50% олово, 50% свинец Твердый, блестящий, низкая температура плавления 901 03 Припой для электрических проводов и металла
Золото 9 карат 37.5% золота, 51,5% меди, 11% серебра Блестящий, прочный, не коррозирует Ювелирные изделия

Сплав тверже, чем эксперимент с чистым металлом

Цель: Исследовать, тверже ли сплав чем его чистый металл.
Постановка задачи: Сплав тверже чистого металла?
Гипотеза: Бронза тверже меди.
Переменные:
(a) Управляемая переменная: различные типы материалов (медь и бронза)
(b) Отвечающая переменная: диаметр вмятины
(c) Контролируемые переменные: диаметр стального шарикоподшипника, высота груза, масса груза
Оперативное определение: Если диаметр вмятины меньше, значит материал тверже.
Материалы: Блок медный, блок бронзовый, целлофановая лента.
Аппарат: Ретортный штатив и зажимы, вес 1 кг, линейка, стальной шарикоподшипник, резьба.
Процедура:

  1. Стальной шарикоподшипник приклеивается к медному блоку с помощью целлофановой ленты.
  2. Гирю весом 1 кг подвешивают на высоте 50 см над медным блоком, как показано на рисунке.
  3. Груз может падать на шарикоподшипник.
  4. Измеряется диаметр вмятины, оставленной шарикоподшипником на медном блоке.
  5. Шаги с 1 по 4 повторяются дважды на других частях медного блока, чтобы получить среднее значение диаметра образовавшихся вмятин.
  6. Шаги с 1 по 5 повторяются с использованием бронзового блока для замены медного блока, при этом другие факторы остаются без изменений.
  7. Показания занесены в таблицу ниже.

Результаты:

90 dentis

Обсуждение меньшего диаметра 9007

    , более жесткий диаметр и диаметр
      прочнее материал.
    1. Средний диаметр вмятин на поверхности медного блока больше, чем у бронзового блока.
    2. Судя по результатам, бронза тверже меди.

    Заключение:
    Гипотеза принята.
    Операционное определение твердости в этом эксперименте - это мера вмятины, образовавшейся на материалах, когда груз весом 1 кг с высоты 50 см падает на шарикоподшипник, прикрепленный к материалу.
    Чем меньше диаметр вмятины, тем тверже материал.

    Железо ржавеет быстрее, чем сталь. Эксперимент

    Цель: Исследовать, ржавеет ли железо быстрее, чем сталь, а сталь ржавеет быстрее, чем нержавеющая сталь.
    Постановка проблемы: Железо ржавеет быстрее стали? Сталь ржавеет быстрее, чем нержавеющая сталь?
    Гипотеза: Железо ржавеет быстрее, чем сталь, а сталь ржавеет быстрее, чем нержавеющая сталь.
    Переменные:
    (a) Управляемая переменная: разные типы гвоздей
    (b) Реагирующая переменная: интенсивность и количество синего цвета
    (c) Контролируемые переменные: размер гвоздей, концентрация используемых растворов, продолжительность образования ржавчины
    Эксплуатационное определение: Чем интенсивнее образуется синий цвет, тем выше скорость ржавления.
    Материалы: Железный гвоздь, стальной гвоздь, гвоздь из нержавеющей стали, раствор желе, раствор гексацианоферрата калия (lll), вода, наждачная бумага
    .
    Аппарат: Пробирки, штатив для пробирок.
    Порядок действий:

    1. Гвозди затирают наждачной бумагой для удаления ржавчины с поверхностей ногтей.
    2. Железный гвоздь помещается в пробирку A, стальной гвоздь в пробирку B и гвоздь из нержавеющей стали в пробирку C.
    3. Готовится 5% раствор желе, добавляя 5 г желе в 100 см 3 кипящая вода.Затем к раствору желе добавляют несколько капель раствора гексацианоферрата (III) калия.
    4. Горячий гелеобразный раствор наливается в три пробирки до полного погружения всех гвоздей.
    5. Пробирки помещают в штатив для пробирок и оставляют в стороне на три дня. Наблюдается интенсивность синего цвета.
    6. Все наблюдения занесены в таблицу ниже.

    Наблюдения:

Металлический блок Диаметр вмятины (мм)
1 2 03 3 03 3 3

Медь 2.9 2,8 2,9 2,87
Бронза 2,1 2,2 2,2 2,17
Пробирка Интенсивность синего цвета Вывод
A Очень быстро .
B Низкий Ржавчина происходит медленно.
C Нет Нет ржавчины.

Обсуждение:

  1. Когда железо ржавеет, каждый атом железа теряет два электрона, образуя ион железа (ll), Fe 2+ .
    Fe (s) → Fe 2+ (водн.) + 2e - (водн.)
  2. Раствор гексацианоферрата калия (lll) добавляют к раствору желе в качестве индикатора для обнаружения ионов железа (ll).
  3. При наличии иона железа (II) раствор гексацианоферрата (III) калия образует темно-синюю окраску.
  4. Чем выше интенсивность синего цвета, тем выше скорость ржавления.
  5. Затвердевший раствор желе используется для улавливания и четкого закрепления синей окраски. Это связано с тем, что в твердых телах диффузия происходит медленнее всего.
  6. По наблюдениям, железо ржавеет быстрее стали. Нержавеющая сталь не ржавеет.
  7. Гвоздь из нержавеющей стали не ржавеет.Это потому, что этот гвоздь представляет собой сплав железа с углеродом, хромом и никелем.
  8. Стальной гвоздь медленно ржавеет. Наличие атомов углерода сделает сталь прочнее железа, но не предотвратит ее ржавчину.
  9. Ржавчина железа является примером коррозии. Когда происходит коррозия, металл теряет электроны, образуя ион металла.

Заключение:
Железо ржавеет быстрее, чем сталь, сталь ржавеет быстрее, чем нержавеющая сталь. Гипотеза принята.
В этом эксперименте операционным определением ржавчины является образование темно-синего цвета, когда различные гвозди погружаются в раствор желе, содержащий раствор гексацианоферрата (III) калия.
Чем больше образуется темно-синий цвет, тем выше скорость ржавления.

.

Что такое металлический сплав? | Разница между металлом и металлическим сплавом

Знаете ли вы, что большинство используемых нами «металлов» на самом деле вовсе не металлы? Это не металлы, а сплавы, и они повсюду вокруг нас! От зубных пломб до самолетов - сплавы составляют значительную часть нашей повседневной жизни. Узнайте, что такое сплав и как его производят.

Что такое металл?

Металл - это чистый химический элемент, как в периодической таблице.91 из 118 элементов в таблице Менделеева - это металлы, что делает их одними из самых распространенных элементов в мире.

В периодической таблице все элементы делятся на металлы и неметаллы. Что-то делает «металлом» то, что оно встречается в природе в природе, имеет блеск, хорошо проводит тепло и электричество и намного плотнее неметаллов.

Есть 5 основных категорий металлов:

  • Недрагоценные металлы
  • Черные металлы
  • Благородные металлы
  • Драгоценные металлы
  • Тяжелые металлы

Основные металлы

Недрагоценные металлы очень распространены в земной коре, и из-за своего количества они недорогие.Цветные металлы отличаются от других металлов, потому что они легче всего подвержены коррозии или окислению. Они чрезвычайно реактивны, и такие вещества, как кислород, вода, кислоты, а также нахождение рядом с другим металлом могут вызвать их коррозию. (Узнайте больше о том, почему ржавеют металлы.)

Существует несколько различных определений «недрагоценных металлов». В горнодобывающей и экономической областях базовые металлы - это металлы, которые не попадают ни в одну из других категорий, например медь, свинец, цинк и никель.

Черные металлы

Черный металл означает, что металл содержит железо.Цветные металлы обычно дороже, потому что они имеют меньший вес, большую проводимость, немагнитность и устойчивость к коррозии. Цветные металлы включают алюминий, медь, свинец, никель, олово и цинк.

Благородные металлы

Благородные металлы известны своей устойчивостью к коррозии и окислению, в отличие от неблагородных металлов. Обычно это редкие или драгоценные металлы. Ученые не пришли к единому мнению о точной классификации каждого элемента в периодической таблице, но чаще всего соглашаются с тем, что металлы, попадающие в категорию «благородных», - это золото, серебро, рутений, родий, палладий, осмий, иридий и платина.Хотя некоторые драгоценные металлы являются благородными металлами, а благородные металлы часто бывают дорогими из-за их разнообразного использования (в искусстве, высоких технологиях, ювелирных изделиях), термины «благородный металл» и «драгоценный металл» не являются синонимами.

Драгоценные металлы

Драгоценные металлы - это редкие элементы, которые естественным образом встречаются в земной коре. Самыми известными являются золото и серебро, но другие драгоценные металлы включают рутений, родий, палладий, осмий, иридий и платину. Несмотря на то, что алюминий является третьим по распространенности элементом на Земле и самым распространенным металлом, он некоторое время считался драгоценным металлом.Это потому, что было очень сложно надежно извлечь его из различных руд.

Некоторым из самых важных гостей Наполеона III подарили алюминиевые столовые приборы, в то время как более скромные посетители должны были есть, используя скудную серебряную посуду. Цена значительно упала после 1882 года, и изобретение новых процессов для коммерческого производства электроэнергии значительно упростило добычу алюминия.

Тяжелые металлы

Тяжелые металлы считаются очень плотными. Вот и все! Были предложены более конкретные определения, но научное сообщество еще не остановилось на одном.Некоторые тяжелые металлы заведомо токсичны, в то время как другие очень важно есть в своем рационе в незначительных количествах! Некоторые тяжелые металлы, такие как кадмий, ртуть и свинец, чрезвычайно ядовиты. Металлы, такие как железо, кобальт и цинк, с другой стороны, выполняют очень важные функции в организме! Вы даже можете купить железо и цинк в качестве добавок в магазине здорового питания.

Остальные тяжелые металлы, такие как галлий, таллий, рутений, индий и серебро, довольно безвредны. Вы можете найти тяжелые металлы, которые используются повсюду! Они используются в клюшках для гольфа, автомобилях, антисептиках, самоочищающихся печах, пластмассах, солнечных панелях, сотовых телефонах, компьютерных чипах и даже ускорителях частиц на атомных электростанциях!

Что такое металлический сплав?

С другой стороны, сплавы

- это искусственные материалы.Вы делаете их, комбинируя металлический элемент с чем-то другим. Сплавы могут включать сочетание металла с металлами, неметаллами или и тем, и другим.

Чугун - отличный пример неметаллического сплава (что немного вводит в заблуждение, потому что все сплавы имеют «металл» - это относится ко второму или добавленному ингредиенту). Железо представляет собой смесь железа и углерода. Он может содержать около 2-3% углерода. (Узнайте больше о чугуне и кованом железе здесь!)

Сплавы

также иногда получают забавные названия! Как и Alnico, сплав железа, алюминия, никеля, кобальта, меди и / или титана.Некоторые из их названий представляют собой смесь названий легирующих агентов. В других случаях они становятся настолько популярными, что получают свое собственное имя, звучащее «на каждый день», например, кованое железо.

Вы действительно можете найти сплавы везде. Фактически, они могут быть более распространены, чем их чистые «металлические» собратья.

Вы найдете их в зубных пломбах (амальгаме), звукоснимателях для гитар (алнико), в виде музыкальных инструментов или дверных ручек (латунь), в украшениях (белое золото), в произведениях искусства (бронзовые статуи), в автомобилях и самолетах (дюралюминий). , на оружии (бронза), внутри электроники (припой), внутри атомных электростанций (магнокс), на опорах зданий (сталь) и даже на вашем обеденном столе (олово)!

Существует более 160 известных сплавов!

Конструкции из металлических сплавов

Когда металл увеличивается в электронный микроскоп, атомы появляются в структуре кристаллической решетки.Также в этом составе присутствуют легирующие добавки. Обычно существует два типа структур сплава: сплавы замещения и сплавы внедрения. Замещение сплавов происходит, если атомы легирующего агента замещают атомы основного металла. С другой стороны, сплавы внедрения возникают, когда сплавы образуются из-за того, что легирующие агенты становятся меньше, чем основной металл.

Как изготавливаются металлические сплавы?

Существует 3 основных метода создания металлических сплавов:

  • Отопление и плавление
  • Порошковая металлургия
  • Ионная имплантация

Отопление и плавление

Нагрев и плавление - один из наиболее часто используемых методов создания сплавов.Это действительно не сильно отличается от кулинарии!

Основной металл (самый высокий процент металла в сплаве) расплавляется, а любые другие металлы расплавляются до тех пор, пока они не станут жидкими. Затем их переливают друг в друга, смешивают и дают остыть до образования чего-то, что называется «твердым раствором». Что-то вроде твердого металлического блока, эквивалентного смешиванию соли с водой до ее растворения.

Порошковая металлургия

Порошковая металлургия - это очень круто, это, наверное, самое близкое к алхимии, что у нас есть сегодня.

Во-первых, основной металл и легирующие добавки нужно превратить в порошки! Для этого есть несколько основных методов:

Процесс губчатого железа - самый старый из методов порошковой обработки. Руду смешивают с чем-то, что называется коксовой мелочью (которая остается от угля после сжигания), и известью, чтобы получить особую серу, которая предотвращает загрязнение порошкообразным основным металлом.

Смесь кокса и извести (не как коктейли!) И руда затем помещаются в специальный барабан, где кокс и известь помещают руду между ними.

Затем барабан перегревается в печи. Ингредиенты оставляют после себя объект, напоминающий бисквит, и шлак. На следующих этапах возможный порошок отделяется от шлака и измельчается до более однородной «порошковой» формы.

Затем порошок нагревается и сверхспрессовывается в сплав!

Другие способы превращения основных металлов в порошок - это распыление (почти как на атомных электростанциях), когда расплавленный металл проталкивается через очень узкую трубку, что создает высокое давление.Газ впрыскивается в поток кипящего металла точно так же, как он выходит из этой трубы, комбинация давления, температуры и молекул газа разделяет атомы металла.

Затем порошки смешиваются и расплавляются в «твердый раствор»!

Железный порошок, полученный методом губчатого железа, является самым дешевым на мировом рынке!

Ионная реализация

Последний распространенный метод создания сплавов - ионная имплантация.

«Ионы» происходят от электричества, поэтому метод ионной имплантации включает «ионный источник» (который, по сути, просто создает электричество), ускоритель, в котором ионы разгоняются очень быстро (трение и быстрое вращение создают тепло, которое ускоряет молекулы. ) и целевую камеру, куда ионы выбрасываются после того, как они закончили.

Метод ионной имплантации действительно лучше всего подходит для создания очень маленьких металлических деталей. Это наиболее распространенный метод создания полупроводников на компьютерных микросхемах.

Вот анимация этого процесса:

Поставки металла и услуги в Tampa Steel and Supply

Металлические сплавы используются в различных проектах, от жилищного и коммерческого строительства до производства автомобилей и т. Д.Если вы работаете с металлическими сплавами, вам может помочь Tampa Steel and Supply. У нас есть обширный список изделий из металла, материалов для изготовления и дополнительных услуг, которые могут помочь в реализации вашего проекта. Чтобы узнать больше о наших продуктах и ​​услугах, позвоните нам сегодня или зайдите в наш выставочный зал в Тампе.

Сделайте запрос онлайн
или позвоните в Tampa Steel & Supply по телефону (813) 241-2801

.

Смотрите также