Что такое оксидирование металла


что это, виды обработки сталей и сплавов

Оксидированием стали создается защитная пленка из сложных окислов, которая препятствует образованию ржавчины. Узнайте о видах обработки, особенностях химического, анодного и термического процессов.

Ни один материал, включая сталь, не может служить вечно. Его необходимо защищать от влаги, солнечных лучей и низких температур. Оксидирование металла создает на его поверхности тонкую защитную пленку, не позволяющую кислороду из воздуха и воде разрушать материал. При этом изменяются технические характеристики сталей, алюминия и его сплавов.

С точки зрения химии оксидирование – это реакция окисления металла и образование на поверхности тонкого слоя кристаллов, связанных кислородом и другими веществами. Технология нанесения защитного покрытия имеет несколько видов различной сложности. Самая простая использовалась несколько веков назад и доступна любому желающему покрыть защитной пленкой деталь в домашних условиях. Сложная технология требует специального оборудования и осуществляется только в условиях производства.

Суть и назначение технологии


В своей основе оксидирование стали имеет окислительно-восстановительную реакцию металла при его взаимодействии с кислородом воздуха, электролитом или специальными кислотно-щелочными растворами. В результате на поверхности детали образуется защитная пленка, повышающая технические характеристики металла:

  • увеличивает твердость;
  • снижает образование задиров;
  • повышает способность деталей к прирабатыванию;
  • увеличивает срок службы;
  • создает декоративное покрытие.

Добавление в электролит растворов для окрашивания позволяет создавать изделия из металла с поверхностями разных цветов.

Покрытие оксидной пленкой применяют для различных материалов. В ювелирной промышленности и при создании бижутерии используют оксидирование многих металлов:

  • серебра;
  • алюминия;
  • меди;
  • титана;
  • латуни;
  • бронзы.

Сущность обработки – в увеличении прочности и придании дополнительной декоративности. Изделия из серебра хорошо держат форму. Это позволяет создавать украшения с острыми углами и тонким орнаментом. С помощью оксидов создается патина, имитирующая старину, и другие эффекты.

В зависимости от характеристик и свойств металла используют различные технологии создания сложных окислов на поверхности.

К положительным качествам оксидирования относится его распределение по поверхности тонкой пленкой в несколько микрон – тысячных долей миллиметра. При этом не меняются размеры деталей и посадочных мест сверху и на поверхности.

Виды оксидирования металла


Процесс оксидирования стали имеет несколько разновидностей:
  • микродуговое;
  • горячее;
  • холодное.

К микродуговому относится способ нанесения оксидной пленки с помощью электролизной установки. Деталь помещается в ванну с электролитом. К ней подключается «+» постоянного тока. К ванне – провод с «–». При прохождении тока на поверхности образуются микроочаги с высокой температурой и давлением. В результате происходит окисление. Микродуговое оксидирование применяют для покрытия алюминия, серебра и их сплавов.

Процесс горячего оксидирования стали заключается в нагреве детали или раствора, в котором она находится, для ускорения процесса образования пленки сложных окислов.

К холодным технологиям относятся, в основном, методы химического покрытия и плазменного, когда поверхность насыщается кислородом под воздействием микротоков или в насыщенном растворе солей.

Химическое


Химическое оксидирование проводится погружением деталей в различные растворы. Низкотемпературный процесс покрытия осуществляют при температуре 30–180 °C. Сталь погружают в раствор щелочей или кислот с добавлением марганца. Затем, после извлечения из ванны, промасливают – смазывают маслом или на несколько секунд погружают в него деталь.

Электрохимическое покрытие оксидами проводится при низких температурах – до 100 °C. Электролит представляет собой раствор нескольких нитратов и хроматов. Получают черное покрытие стали.

Пищевая нержавейка содержит много легирующих веществ, включая хром и марганец. Она требует для покрытия сложного оборудования. В домашних условиях ее можно оксидировать в растворе натриевой селитры. Поверхность приобретает яркий синий цвет.

Анодное

Анодное оксидирование небольших деталей доступно делать в домашней мастерской. Для этого надо иметь аккумулятор или выпрямитель тока. Анод подключается к детали и источнику постоянного тока. При погружении стали в раствор слабокислого электролита возникает движение электронов, и вместе с ними частицы солей и кислот проникают в верхний слой металла. В результате образуются кристаллы железа со сложными окислами. Они постепенно покрывают всю поверхность детали слоем в несколько микрон.

Регулировать скорость процесса для образования оксидной пленки нужной толщины можно изменением силы тока и повышением температуры электролита. Анодирование влияет на первоначальные характеристики стали и цветных металлов:

  • изменяет цвет;
  • увеличивает прочность;
  • пленка имеет низкую электропроводность;
  • не допускает образования простых окислов железа – коррозии.

Термическое


Кто наблюдал за сваркой деталей или их нагревом в термопечах, видел на поверхности цвета побежалости: от желтого оттенка до синего тона, переходящего в черный. Они зависят от температуры, до которой нагрелась сталь в конкретной точке. Чем сильнее прогрет металл, тем больше он окислен, имеет более темный цвет.

Достаточно нагреть поверхность до 300 ⁰C, чтобы провести термическое оксидирование. На стали появится тонкая пленка окислов желтого и светло-коричневого цвета. Чем выше содержание легирующих веществ, тем сильнее надо греть сталь.

Часто нагрев используют для более активного протекания химического и анодного оксидирования стали. Помещенный в горячий раствор натриевой селитры или смеси кислот металл быстрее вступает в реакцию.

Плазменное

Метод холодного оксидирования – плазменное покрытие деталей. Окисление происходит при низкой температуре. Деталь помещают в плазму, которую создают токи ВЧ или СВЧ, аналогичные микроволновой печи. В камере высокое содержание кислорода.

Плазменное оксидирование применяют, в основном, для повышения светочувствительности и электропроводности деталей оптических приборов и плат.

Лазерное


Оксидировать деталь с помощью лазера можно только в условиях промышленного предприятия. Деталь устанавливается на столе или зажимается в патроне, набирается программа, и лазер прогревает узкие полоски одна возле другой по всей поверхности. Оптимальный вариант – использование станков ЧПУ.

Недостаток лазерного оксидирования сталей – в покрытии заготовок только снаружи. В отверстия малого диаметра головка лазерной установки не войдет.

Оксидирование своими руками

Делать защитное покрытие в домашних условиях проще всего по старинному рецепту. Для этого стальной предмет следует очистить от всех видов загрязнений, протравить в слабом растворе кислоты. Любое оставшееся пятно будет препятствовать процессу оксидирования стали.

  1. Нагреть конструкционную сталь до 300 ⁰C. Легированные и углеродистые стали требуют более высоких температур. Чем больше легирующих элементов, тем сильнее следует греть.
  2. Опустить горячую заготовку в льняное масло на 8–18 минут.
  3. Для получения плотного слоя, надежно защищающего сталь от ржавчины, и создания изоляционного слоя, процедуру следует повторить 4–6 раз.

Каленые стали при нагреве до температуры выше 300 ⁰C могут отпуститься – стать мягче. Поэтому металл после закалки греют индуктором токами ТВЧ до 250–280 ⁰C. Если нет возможности нагреть только поверхность заготовки, температуру снижают до 220–250 °C, увеличив количество нагревов и погружений.

Льняное масло использовали в прошлые века. Сейчас его можно заменить веретенным, широко применяемым для закалки стали.

Оксидирование стали – интересный процесс. С его помощью можно самостоятельно защитить от коррозии небольшие изделия, крепеж в автомобиле и других устройствах.

Какой метод больше всего понравился нашим читателям и что они готовы применить на практике? Нам интересно ваше мнение.

Степени окисления (степени окисления)

 

Использование степеней окисления для определения того, что было окислено, а что восстановлено

Это наиболее распространенное использование степеней окисления.

Помните:

Окисление связано с увеличением степени окисления

Восстановление включает снижение степени окисления

В каждом из следующих примеров мы должны решить, включает ли реакция окислительно-восстановительный потенциал, и если да, то что было окислено, а что восстановлено.

Пример 1:

Это реакция между магнием и соляной кислотой или газообразным хлористым водородом:

Изменилась ли степень окисления чего-либо? Да, есть - у вас есть два элемента, которые находятся в соединениях с одной стороны уравнения и как несоединенные элементы с другой. Чтобы быть уверенным, проверьте все степени окисления :.

Степень окисления магния увеличилась - он окислился. Степень окисления водорода упала - она ​​уменьшилась.Хлор находится в одной и той же степени окисления по обе стороны уравнения - он не был окислен или восстановлен.

Пример 2:

Реакция между гидроксидом натрия и соляной кислотой:

Проверка всех степеней окисления:

Ничего не изменилось. Это не окислительно-восстановительная реакция.

Пример 3:

Это подлый! Реакция между хлором и разбавленным холодным раствором гидроксида натрия:

Очевидно, что хлор изменил степень окисления, потому что он попал в соединения, начиная с исходного элемента.Проверка всех степеней окисления показывает:

Хлор только вещь, чтобы изменить степень окисления. Он был окислен или восстановлен? Да! Обе! Один атом был восстановлен, потому что его степень окисления упала. Другой был окислен.

Это хороший пример реакции диспропорционирования . Реакция диспропорционирования - это реакция, в которой одно вещество одновременно окисляется и восстанавливается.

 

Использование степеней окисления для определения окислителя и восстановителя

Это лишь незначительное дополнение к последнему разделу.Если вы знаете, что было окислено, а что восстановлено, вы можете легко определить, что такое окислитель и восстановитель.

Пример 1

Это реакция между ионами хрома (III) и металлическим цинком:

Степень окисления хрома изменилась с +3 до +2, и поэтому он был восстановлен. Цинк перешел от нулевой степени окисления в элементе до +2. Он окислился.

Так что же происходит с уменьшением? Это цинк - цинк отдает электроны ионам хрома (III).Итак, цинк - это восстановитель.

Точно так же вы можете вычислить, что окислителем должны быть ионы хрома (III), потому что они отбирают электроны у цинка.

Пример 2

Это уравнение реакции между ионами манганата (VII) и ионами железа (II) в кислых условиях. Это прорабатывается далее на странице.

Если взглянуть быстро, становится очевидным, что ионы железа (II) окислены до ионов железа (III).Каждый из них потерял электрон, а их степень окисления увеличилась с +2 до +3.

Водород все еще находится в степени окисления +1 до и после реакции, но ионы манганата (VII) явно изменились. Если определить степень окисления марганца, то она упала с +7 до +2 - снижение.

Итак, ионы железа (II) окислены, а ионы манганата (VII) восстановлены.

Что восстановило ионы манганата (VII) - очевидно, это ионы железа (II).Железо - единственное, что имеет измененную степень окисления. Итак, ионы железа (II) являются восстановителем.

Точно так же ионы манганата (VII) должны быть окислителем.

 

Использование степеней окисления для определения реакционных соотношений

Это иногда полезно, когда вам нужно выработать реакционные пропорции для использования в реакциях титрования, когда у вас недостаточно информации, чтобы разработать полное ионное уравнение.

Помните, что каждый раз, когда степень окисления изменяется на одну единицу, переносится один электрон. Если степень окисления одного вещества в реакции падает на 2, это означает, что оно приобрело 2 электрона.

Что-то еще в реакции должно терять эти электроны. Любое снижение степени окисления одним веществом должно сопровождаться повышением такой же степени окисления другим веществом.

 

Этот пример основан на информации из старого вопроса AQA уровня A.

Ионы, содержащие церий в степени окисления +4, являются окислителями. (Они сложнее, чем просто Ce 4+ .) Они могут окислять ионы, содержащие молибден, от степени окисления +2 до +6 (от Mo 2+ до MoO 4 2- ). При этом церий восстанавливается до степени окисления +3 (Ce 3+ ). Какие пропорции реагирования?

Степень окисления молибдена увеличивается на 4. Это означает, что степень окисления церия должна снизиться на 4 для компенсации.

Но степень окисления церия в каждом из его ионов падает только с +4 до +3, то есть на 1. Таким образом, очевидно, что на каждый ион молибдена должно приходиться 4 иона церия.

Реакционные пропорции: 4 церийсодержащих иона на 1 ион молибдена.

 

Или возьмем более общий пример, включающий ионы железа (II) и ионы манганата (VII). . .

Раствор манганата калия (VII), KMnO 4 , подкисленный разбавленной серной кислотой, окисляет ионы железа (II) до ионов железа (III).При этом ионы манганата (VII) восстанавливаются до ионов марганца (II). Используйте степени окисления, чтобы составить уравнение реакции.

Степень окисления марганца в ионе манганата (VII) +7. Название говорит вам об этом, но попробуйте еще раз для практики!

При переходе к ионам марганца (II) степень окисления марганца снизилась на 5. Каждый ион железа (II), который вступает в реакцию, увеличивает степень окисления на 1. Это означает, что должно быть пять ионов железа (II), реагирующих на каждый ион манганата (VII).

Таким образом, левая часть уравнения будет: MnO 4 - + 5Fe 2+ +?

Правая часть будет: Mn 2+ + 5Fe 3+ +?

После этого вам придется гадать, как уравновесить оставшиеся атомы и заряды. В этом случае, например, весьма вероятно, что кислород попадет в воду. Это означает, что вам откуда-то нужен водород.

Это не проблема, потому что реакция протекает в растворе кислоты, поэтому водород вполне может происходить из ионов водорода.

В конечном итоге вы получите это:

Лично я предпочел бы выводить эти уравнения из электронных полууравнений!

.

Как определить степень окисления элементов в соединении

[Депонировать фотографии]

В увлекательной химии есть понятие степени окисления, которое представляет собой число для формулировки окислительно-восстановительных реакций.

Чтобы быть кратким, в этой науке степень окисления означает условный заряд в атоме, который теряет или получает электроны, и эта цифра представляет собой метод расчета переноса электронов.Это число присваивается одному атому или группе атомов, и характеризует количество перераспределенных электронов, а также показывает принцип переноса электронов в результате определенной химической реакции.

[Депонировать фотографии]

Определить степень окисления одновременно легко и сложно - она ​​зависит от атомов и молекул, которые их составляют.Часто бывает, что атомы некоторых химических элементов могут иметь совершенно разную степень окисления.

Чтобы упростить процесс определения степени окисления, используются специальные простые правила, и любой, кто знает основы химии и математики, сможет без труда использовать их для определения определенной степени окисления. Мы всегда должны помнить, что часто степень окисления и валентность элемента равны друг другу.

Эта научная тема широко изучается в школе, поэтому, чтобы понять, как определить степень окисления, мы предлагаем вам прочитать эту статью.

Первый этап: определяем, является ли химическое вещество элементарным.

Степень окисления атомов, которые никак не взаимодействуют с другими атомами в результате химических процессов, равна нулю.

Этот принцип применяется к группе веществ, состоящей из отдельных свободных атомов.Это правило также применяется к химическим элементам, которые состоят из двухатомных или многоатомных молекул только одного элемента.

[Депонировать фотографии]

Например, железо Fe и кальций Ca имеют степень окисления ноль, потому что они состоят из одного элемента, который не связан химически с другими, как и многоатомные молекулы с одним и тем же типом атома, например, для озона O ₃ степень окисления также будет 0.

Расчет степени окисления в ионных соединениях

Степень окисления идентична заряду атомов или группы атомов. Этот принцип применим как для свободных ионов, так и для тех, которые входят в структуру химических соединений.

Например, степень окисления иона хлора равна -1, и если мы исследуем хлор в химическом соединении, например в соляной кислоте HCl, степень окисления этого элемента также будет -1.Так как ион водорода имеет степень окисления +1, заряд иона хлора равен -1, что означает, что его степень окисления равна -1.

[Депонировать фотографии]

Ионы металлов могут иметь много степеней окисления

Мы рассмотрим это на примере железа (Fe), потому что его ион может иметь заряд +2 и +3. Заряд ионов металлических элементов можно определить по заряду других ионов в химическом соединении, и в формулах записи этот заряд обозначается римскими цифрами, например, железо (II) имеет степень окисления +2.Здесь вы найдете потрясающие безопасные эксперименты с железом.

Как определить степень окисления соединения?

Как мы уже установили, соединение должно быть нейтральным. Рассмотрим AlCl₃.

[Викимедиа]

Как мы уже говорили выше, заряд ионов в хлоре равен -1, а в этом соединении есть три атома хлора.Соответственно для компенсации минусов заряд алюминия должен быть +3.

Как определить степень окисления O₂?

Когда кислород находится в свободном состоянии (не вступая в реакцию с какими-либо элементами), степень окисления равна нулю (фактически, как и другие элементарные элементы).

Если кислород входит в состав любого гидроксида, например гидроксида водорода h3O2, он будет иметь степень окисления -1.

Если кислород взаимодействует с фтором (F), он будет иметь степень окисления +2.

Рассмотрим степень окисления водорода H

Этот химический элемент имеет степень окисления +1 (кроме молекулярного состояния водорода), но в исключительных случаях.

via GIPHY

Например, в воде HO степень окисления водорода будет +1, потому что степень окисления кислорода равна -2, и поэтому все соединение, согласно правилам, имеет нейтральный заряд.

Но если мы возьмем NaH, степень окисления H будет -1, так как заряд натрия +1.

Как определить степень окисления фтора (F)

Хотя степень окисления химических элементов зависит в большинстве случаев от множества факторов, фтор всегда будет иметь степень окисления -1. Это связано с тем, что фтор имеет низкую электрическую отрицательность, то есть атомы F неохотно вырываются из собственных электронов, но интенсивно притягивают электроны других элементов.

Правило: сумма степеней окисления равна заряду химического элемента.

Сумма степеней окисления всех атомов соединения должна быть нейтральной. С помощью этого правила мы можем проверить, ошиблись ли мы при решении химической задачи.

Как определить степень окисления? Вот несколько полезных советов, которые помогут в решении проблем:

Таблица Менделеева пригодится, чтобы сделать расчет точным. Вы должны научиться правильно пользоваться им и различать, где находятся металлы и неметаллы.

Чтобы найти степень окисления металлов, которая часто имеет несколько соответствующих значений, вы должны определить их по степени окисления других атомов в соединении.

Если вы сложите все величины окисления атомов в химической связи, вы всегда получите нулевую степень окисления.

Наивысшая степень окисления элемента определяется с помощью таблицы Менделеева по группе, в которой он находится.

Металлы во всех соединениях имеют положительную степень окисления.

В соединениях с неметаллами водород имеет степень окисления +1, а степень окисления металлов - -1.

В соединениях кислород имеет степень окисления -2, за исключением H₂O₂, OF₂, K₂O₂.

[Депонировать фотографии]

Степени окисления неметаллов при соединении с атомами металлов всегда будут отрицательными, но при взаимодействии с атомами неметаллов они могут иметь положительную или отрицательную степень окисления.

Чтобы найти наивысшую степень окисления неметаллов, из числа 8 вычтите номер группы, в которой находится элемент, и наивысшая степень окисления со знаком плюс будет равна количеству электронов на внешнем слое. . Чтобы узнать количество электронов во внешнем слое, посмотрите на номер группы в периодической таблице.

.-, Fe4 [Fe (CN) 6] 3, Nh5NO3, so42-, ch4cooh, cuso4 * 5h3o).


Степень окисления атома - это заряд этого атома после ионного приближения его гетероядерных связей. Степень окисления является синонимом степени окисления. Определить степень окисления по структуре Льюиса (рис. 1a) даже проще, чем по молекулярной формуле (рис. 1b). Степень окисления каждого атома может быть рассчитана путем вычитания суммы неподеленных пар и электронов, которые он получает от связей, из количества валентных электронов.Связи между атомами одного элемента (гомоядерные связи) всегда делятся поровну.

Рисунок 1. Различные способы отображения степеней окисления этанола и уксусной кислоты. R - это сокращение для любой группы, в которой атом углерода присоединен к остальной части молекулы связью C-C. Обратите внимание, что замена группы CH 3 на R не изменяет степень окисления центрального атома. → Скачать изображение высокого качества

При работе с органическими соединениями и формулами с несколькими атомами одного и того же элемента легче работать с молекулярными формулами и средними степенями окисления (рис. 1d).Органические соединения можно записать таким образом, что все, что не изменяется до первой связи C-C, заменяется сокращением R (рис. 1c). В отличие от радикалов в органических молекулах, R не может быть водородом. Поскольку электроны между двумя атомами углерода распределены равномерно, группа R не изменяет степень окисления атома углерода, к которому она присоединена. Вы можете найти примеры использования на странице Разделите окислительно-восстановительную реакцию на две полураакции.

Правила присвоения чисел окисления

  • Степень окисления свободного элемента всегда равна 0.
  • Степень окисления одноатомного иона равна заряду иона.
  • Фтору в соединениях всегда присваивается степень окисления -1.
  • Щелочные металлы (группа I) всегда имеют степень окисления +1.
  • Щелочноземельным металлам (группа II) всегда присваивается степень окисления +2.
  • Кислород почти всегда имеет степень окисления -2, за исключением пероксидов (H 2 O 2 ), где она равна -1, и соединений с фтором (OF 2 ), где она равна +2.
  • Водород имеет степень окисления +1 в сочетании с неметаллами, но имеет степень окисления -1 в сочетании с металлами.
  • Алгебраическая сумма степеней окисления элементов в соединении равна нулю.
  • Алгебраическая сумма степеней окисления иона равна заряду иона.

Определение степени окисления органических соединений

  • Степень окисления любого химически связанного углерода может быть назначена добавлением -1 для каждого дополнительного электроположительного атома (H, Na, Ca, B) и +1 для каждого еще электроотрицательного атома (O, Cl, N, P) и 0 для каждого атома углерода, непосредственно связанного с представляющим интерес углеродом.Например:
.

Simple English Wikipedia, бесплатная энциклопедия

Железо окисляется, образуя ржавчину

Окисление - это любая химическая реакция, в которой происходит перемещение электронов. В частности, это означает, что вещество, которое отдает электроны, окисляется. Обычно это реакция между кислородом и таким веществом, как железо.

Когда железо вступает в реакцию с кислородом, оно образует химическое вещество, называемое ржавчиной, потому что оно окислилось (железо потеряло несколько электронов), а кислород восстановился (кислород получил несколько электронов).

Формула коррозии: 4Fe + 3O 2 → 2F → Fe 2 O 3 .x H 2 O

Окисление противоположно восстановлению. Реакция восстановления всегда идет вместе с реакцией окисления. Окисление и восстановление вместе называются редокс (восстановление и окисление). Кислород не обязательно должен присутствовать в реакции, чтобы это была окислительно-восстановительная реакция.


Окисление - это потеря электронов.

Уменьшение - это прирост электронов.

С точки зрения переноса кислорода окисление можно определить как химический процесс, при котором вещество получает кислород или теряет электроны и водород.

Когда одним из реагентов является кислород, окисление - это увеличение количества кислорода. Снижение - это потеря кислорода. Например:

  • Fe 2 O 3 + 3CO → 2Fe + 3CO 2

Восстановление и окисление протекают одновременно, что является окислительно-восстановительной реакцией . [1] Потеря атомов водорода и увеличение количества атомов кислорода называется окислением.Увеличение количества атомов водорода и потеря атомов кислорода называется восстановлением. Окисление - это увеличение количества атомов кислорода, а восстановление - это увеличение количества атомов водорода.

.

Смотрите также