Что такое наклеп металла


Наклеп и нагартовка металлов: сущность и термины

Нагартовка

Нагартовка или деформационное упрочнение – это важный технологический процесс, которые применяют для увеличения прочности и/или твердости металлов и сплавов, которые не могут быть упрочнены термической обработкой. Эта технологическая обработка включает изменение формы изделия методами холодной пластической деформации, то есть ввода в металл механической энергии [1]. В результате этой обработки металл становится прочнее тверже, но теряет пластичность, как показано на рисунке 1.

Рисунок 1 – Влияние степени нагартовки на прочность, твердость и пластичность металлов [1]

Наклеп и нагартовка

В русскоязычной технической литературе наблюдается определенная путаница в определении и применении терминов «наклеп» и «нагартовка».  Чаще всего эти термины отождествляются, применяются один вместо другого или оба сразу. Обычно наклепом (нагартовкой) называют как сам физический процесс изменения кристаллической структуры металла при его пластическом деформировании, так и результат этого процесса, то есть повышение прочности и твердости металла.

Предел текучести и наклеп

Одной из характеристик любого металла, в том числе, алюминия, является его предел текучести. Предел текучести металла – это напряжение, при котором этот металл начинает деформироваться пластически.

При напряжениях ниже этого предела текучести материал деформируется упруго. Если напряжения снимаются, то металл возвращается к своему первоначальному состоянию до приложения этих напряжений.

Обычно нагружение металла выше предела текучести является для него вредным. Недопущение напряжений выше предела текучести является главным требованием при проектировании деталей, изделий и сооружений.

Однако изучение изменения микроструктуры металла после деформации показывают, что механические свойства этого металла также изменяются. В частности, испытание на растяжение показывает, что металлический образец, который нагружался выше предела текучести обычно получает деформационное упрочнение или наклеп (рисунок 2).

Рисунок 2.1 – Увеличение предела текучести металла после его нагружения выше предела текучести

Что такое наклеп металла

Атомы, решетка, дислокации

Металлы и их сплавы, в том числе, алюминий и его сплавы, имеют кристаллическую структуру и состоят из большого количества зерен. Эти зерна имеют неправильную форму и различные размеры. В каждом зерне атомы упорядочены, но смежные зерна по-разному ориентированы относительно друг друга. В процессе холодной деформации структура зерен меняется за счет их фрагментации зерен, движения атомов и искажения атомной решетки.

Когда материал подвергается механическому нагружению, в его кристаллической структуре образуются микроскопические дефекты, которые известны как дислокации. Если нагрузки продолжают увеличиваться, эти дислокации начинают продвигаться и взаимодействовать между собой. Таким образом они образуют новую внутреннюю структуру, которая сопротивляется дальнейшей пластической деформации. Эта структура повышает предел текучести материала, то есть его  способность сопротивляться прилагаемым усилиям. При этом пластические свойства материала снижаются. Одним из наиболее известных путей намеренного создания наклепа является холодная пластическая формовка деталей и изделий – холодная обработка металлов давлением.

Рисунок 2.2 – Нагартовка алюминия  [6]

Типичными процессами холодной обработки металлов давлением являются:

  • холодная ковка (рисунок 2)
  • холодная прокатка (рисунок 3)
  • холодное прессование (экструзия) (рисунок 4)
  • волочение (рисунок 5)

Рисунок 3 – Ковка металла

Рисунок 4 – Прокатка металла

Рисунок 5 – Прессование металла

Рисунок 6 – Волочение металла

 

Уменьшение плотности металла

При наклепе металла его плотность уменьшается. Это происходит потому, что пластическая деформация приводит к нарушению порядка в размещении атомов, увеличение плотности дефектов и образование микропор. Уменьшение плотности означает увеличение удельного объема – объема единицы массы.

Остаточные напряжения

Наружный наклёпанный слой стремится расшириться, а внутренние слои его «не пускают» – в нем возникают сжимающие остаточные напряжения. Эти напряжения бывают очень полезными, так как способны замедлять зарождение и рост поверхностных усталостных трещин.

Полезный наклеп

Наклеп может быть желательным и нежелательным, полезным и вредным. Если наклеп металла является полезным, то при его изготовлении стремятся применять операции холодного пластического деформирования: холодную прокатку, волочение, обработку дробью, галтовку, накатку и тому подобное. Это  особенно важно для металлов и сплавов, которые не способны упрочнятся термически. К этим материалам относятся низкоуглеродистые стали, некоторые алюминиевые сплавы, а также чистая медь. Когда эти материалы подвергаются сжатию, волочению, гибке или ковке, то напряжения, которые при этом возникают, приводят к возникновению в кристаллической структуре дислокаций, которые упрочняют металл. В этом случае применяют оба термина: и наклеп, и нагартовка.

Стандарты о наклепе и нагартовке

Отечественные, еще советские, стандарты – ГОСТы – применяют к полезно «наклепанным» металлическим изделиям, например, листам алюминиевых сплавов только термин «нагартованные» и совершенно не употребляют слова «наклеп» или «наклепанные». Можно видеть это, например, в ГОСТ 21631 на листы из алюминия и алюминиевых сплавов: «листы нагартованные», «листы полунагартованные».

Вредный наклеп

Нежелательный, вредный наклеп возникает, например, когда пластичные и мягкие металлы и сплавы подвергаются механической обработке резанием. Чрезмерно глубокие резы за один проход приводят с большой скоростью могут приводить к возникновению интенсивного наклепа с нежелательным увеличением прочности металла и его охрупчиванию.  Это препятствует дальнейшей механической обработке детали, а может привести и к повреждению режущих инструментов. Другим примером вредного наклепа может служить повторяющееся нагружение детали с превышением предела текучести материала. При таком нагружении материал в критических сечениях может быстро наклепываться, терять свою пластичность и разрушаться. В подобных случаях явление деформационного упрочнения называют наклепом, но никогда не называют нагартовкой.

Когда «наклеп», а когда «нагартовка»?

Учитывая выше изложенное, делаем два «смелых», но естественных вывода.

Наклепом называется любое проявление деформационного упрочнения кристаллических материалов – полезное и вредное, умышленное и неумышленное.

Нагартовкой называется только полезное деформационное упрочнение изделий, которое умышленно применяют к изделиям с целью повышения их прочностных свойств. Иногда, может быть, и не умышленно, но всегда осознанно.

Что такое холодная деформация

Холодной пластической деформацией металлов считают   пластическую деформацию при определенной температуре, после которой в металле возникает наклеп и он сохраняется  неизменным неограниченно длительное время. По-научному это звучит так: температура холодной деформации для достижения эффекта нагартовки (наклепа) металла должна быть ниже температуры его рекристаллизации, то есть температуры, при которой на месте старых,  деформированных и вытянутых, зерен металла начинают возникать и расти новые, недеформированные и округлые зерна. Обычно эта температура составляет половину от абсолютной температуры плавления этого металла или сплава. Однако на практике нагартовка металлов производится при комнатной температуре или при температуре не выше трети температуры плавления.

Что такое горячая деформация

В отличие от холодной деформации горячая деформация металлов и сплавов происходит при температуре, величина которой достаточна для того, чтобы рекристаллизация деформированной структуры металла происходила одновременно с пластическим деформированием. Обычно горячую деформационную обработку (обработку давлением) производят при температуре  выше температуры рекристаллизации металла (обычно от 70 до 90 % абсолютной температуры плавления). После такой горячей обработки получают металл с благоприятной мелкозернистой рекристаллизованной структурой.

Деформируемые алюминиевых сплавов

С металлургической точки зрения все серии деформируемых алюминиевых сплавов разбиваются на две большие группы:

  • деформационно-упрочняемые сплавы
  • сплавы, упрочняемые термической обработки (старением).

Строго говоря, все металлы и сплавы могут деформационно упрочняться. Однако, в области металлургии алюминия, это наименование относится к сплавам только тех серий, которые не могут упрочняться термической обработкой, то есть старением.

Нагартовка деформационно-упрочняемых сплавов

Модификация структуры

К этим сплавам относятся все сплавы серий 1ххх, 3ххх и 5ххх, а также часть сплавов серии 8ххх. Их технологическая цепочка состоит из этапов горячей обработки давлением, за которыми, возможно, следуют этапы холодной обработки давлением с промежуточным или завершающим отжигом.

Деформационное упрочнение – нагартовка – включает модификацию структуры под воздействием пластической деформации. Это происходит не только в ходе производства полуфабрикатов при прокатке, правке растяжением, волочении и т, п., но также в ходе последующих производственных этапах, таких как формовка, гибка и других производственных операциях.


Рисунок 6.1 – Кривые нагартовки алюминиевого сплава 5083 [4]

Механические свойства

Деформационное упрочнение повышает механические прочностные свойства и твердость, но снижает пластичность (рисунок 6).


Рисунок 6.2 – Влияние деформационного упрочнения на механические свойства:
предел прочности при растяжении, предел текучести (0,2%) и относительное удлинение [3]

Уровень механических свойств, который может достигаться, зависит от легирующих элементов. Например, сплавы серии 5ххх, которые содержат большое количество магния, имеют более высокий потенциальный уровень механических свойств, чем у сплавов других  серий: 1ххх, 3ххх и 8ххх. В  результате всегда происходит постепенное повышение механических свойств, вплоть до той точки, за которой дальнейшая обработка становится трудной, если вообще возможной. В этом случае, если требуется дальнейшая пластическая деформация, не обходимо производить термическую обработку отжигом.

Cмягчающий отжиг

Упрочнение, которое возникло в результате холодной пластической обработки может быть устранено или смягчено путем отжига. В зависимости от комбинации длительность-температура, это умягчение может быть (рисунок 7):

  • частичным: это – cмягчающий или неполный отжиг;
  • полным: это – рекристаллизационный отжиг, в ходе которого образуется новая зеренная структура (рисунок (8).

Рисунок 7 – Изотермические кривые отжига сплава 5754 [3]

Рисунок 8 – Изменение твердости и структуры при отжиге [3]

Временные и температурные параметры являются специфическими для каждого сплава и зависят от степени деформационного упрочнения, которому материал подвергался перед отжигом.

Как и у других металлов и сплавов, существует критическая зона деформационного упрочнения (рисунок 9.1). Если отжиг применяется к материалу в состоянии, которое находится в этой критической зоне, то может происходить бесконтрольный рост зерна. Это делает последующие операции формовки, такие как волочение и гибки более трудными. После деформации поверхность металла может иметь вид, который называют «апельсиновая корка».

Рисунок 9.1 – Изменение размера зерна при отжиге в зависимости от степени нагартовки [3]

Уровень механических свойств полуфабриката и, в частности, компромисс между пределом прочности и пластичностью (относительным удлинением), контролируются параметрами деформационной обработки и последующими операциями отжига (промежуточными или заключительным).

Необходимо отметить, что при одинаковом уровне предела прочности уровень пластичности будет выше в нагартованном и частично отожженном металле (h3X), чем в «чисто» нагартованном металле (h2X) (рисунок 9.2). Поэтому состояния с частичным (смягчающим) отжигом являются более предпочтительными, когда максимальная способность к формовке является главным фактором, например, при глубокой вытяжке [3].


Рисунок 9.2- Различие нагартованных состояний h24 и h34 [5]

Нагартовка термически упрочняемых сплавов

Для термически упрочняемых сплавов нагартовка может быть дополнением к уровню прочности, которое достигается путем упрочнения за счет выделения упрочняющей фазы при их термической обработке.

В случае полностью полностью упрочненных термической обработкой  сплавов увеличение их прочности путем дополнительно холодной деформации после старения сравнительно невелико, кроме очень высоких степеней нагартовки. Часто эта возможность ограничена низкой способностью. сплавов в этом состоянии к пластической деформации. Основное применение этой технологии относится к некоторым прессованным и холоднотянутым изделиям, таким как проволока, прутки и трубы, которые подвергаются холодному волочению после термической обработки для увеличения прочности и повышения качества поверхности [2].

Влияние температуры нагартовки

Характеристики нагартовки алюминиевых сплавов сильно зависят от температуры. Деформационное упрочнение значительно сильнее происходит при криогенных температурах, чем при комнатной температуре. При повышенных температурах характеристики нагартовки зависят как температуры, так и от скорости деформации. Деформационное упрочнение снижается с повышением температуры обработки до тех пор, пока температура не достигнет величины, выше которой не происходит нагартовки из-за динамического возврата и рекристаллизации. Динамический возврат приводит к формированию зубзеренной структуры, которая аналогична той, которая возникает при нагреве предварительно наклепанного металла. Субзеренная структура также до некоторой степени повышает прочность алюминиевых сплавов [2].

Источники:

1. The welding of aluminium and its alloys / Gene Mathers – Woodhead Publishing Ltd, 2002

2. Designing with Aluminum Alloys / Nack J. Kim – Handbook of Mechanical Alloy Design // ed. E. Totten & others, 2004 – pp. 441-486.

3. Corrosion of Aluminium / Christian Vargel – ELSEVIER, 2004.

4. Aluminium in Commercial Vehicle – European Aluminium Association – 2011

5. Production routes of wrought aluminium alloys / Aluminium technologies – 01.12.2015

6. TALAT 1501

Что такое упрочнение?

Накладное упрочнение, также известное как деформационное упрочнение, представляет собой процесс, который позволяет повысить прочность металлического компонента с помощью так называемой пластической деформации. Некоторые металлы и металлические сплавы, такие как алюминий или медь, наиболее эффективно упрочняются именно с помощью этого подхода. Существенный процесс включает создание определенных перемещений дислокаций в структуре самого металла, что приводит к сохранению всех характеристик металла, в то же время обеспечивая материалу дополнительное усиление.

Worker

Существует несколько различных обработок, которые можно использовать для упрочнения. В некоторых случаях процесс предполагает использование тепла. Это особенно актуально в ситуациях, когда есть желание изменить форму металла, а также повысить прочность готового изделия.В других случаях металл может подвергаться пластической деформации за счет холода, а не тепла. В этом сценарии температура металла снижается до уровня, при котором происходит кристаллизация внутри металла, что позволяет изгибать, сжимать, вытягивать или сдвигать металл для создания желаемой формы и степени прочности.

В процессе деформационного упрочнения металл часто бывает ковким, что облегчает обработку материала любой желаемой формы.Например, медь, которая подвергается обработке, будет в некоторой степени податливой при использовании тепла или холода для создания эффекта. В этот период можно легко растянуть, согнуть или даже забить медь любой желаемой формы. После завершения процесса отверждения медь становится очень прочной и может сохранять свою форму в течение длительного времени.

Одним из преимуществ наклепа является то, что этот процесс может помочь снизить вероятность растрескивания по поверхности упрочненного металла или металлического сплава.Используя этот процесс, можно использовать металлы для создания устройств, которые рассчитаны на то, чтобы выдерживать определенную нагрузку в течение определенного периода времени. Поскольку деформационное упрочнение не может быть обращено вспять, прочность легко измерить, что позволяет выбрать подходящий металл или сплав для изготовления изделия.

К преимуществам наклепа можно отнести также способность контролировать степень загрязнения самого металла.Это, в свою очередь, способствует упрочнению металла, так как присутствие загрязняющих веществ, которые могут ослабить металл в различных точках, сводится к минимуму. Результатом является однородность прочности, которая помогает обеспечить срок службы готового продукта при условии, что продукт подвергается использованию в соответствии со стандартами, установленными производителем.

Упрочнение также имеет некоторые недостатки, из-за которых в некоторых ситуациях следует избегать его.После обработки металл будет несколько менее пластичным, что делает его непригодным для производства некоторых видов продукции. Кроме того, в процессе требуется большое усилие, независимо от того, используется ли тепло или холод. Направляющие свойства металла также могут быть нарушены, что является еще одним фактором, который может сделать металл непригодным для использования в определенных целях. По этой причине деформационное упрочнение может быть желательным, исходя из природы изделий, которые будут изготовлены из металла, или быть совершенно нежелательным как событие, которое непреднамеренно происходит во время производственного процесса.

.

Работать твердо - тяжелая работа! Узнайте, как сделать металлы крепче

Убедитесь, что в вашем браузере включен JavaScript. Если вы оставите отключенным JavaScript, вы получите доступ только к части предоставляемого нами контента. Вот как.
Области науки Материаловедение
Сложность
Требуемое время Long (2-4 недели)
Предварительные требования Нет
Наличие материалов Требуются специальные предметы.Вам понадобятся листы алюминия и меди. См. Дополнительную информацию в разделе «Материалы и оборудование».
Стоимость Низкая (20–50 долларов)
Безопасность Возможны легкие травмы. Соблюдайте осторожность при использовании молотка и при работе с металлическими листами с острыми краями. Рекомендуется наблюдение взрослых.

Абстрактные

Легко забыть, что металлы есть везде и почти во всем.Они являются частью нашей жизни во многих отношениях, поэтому мы их почти не замечаем. Но просто остановись и подумай об этом. Мы используем металлические ложки, чтобы есть и готовить пищу. Автомобили, мотоциклы и самолеты состоят из металлов. Металлы есть в нашей мебели и являются частью ваших школьных принадлежностей. У некоторых людей даже во рту присутствует металл в зубных работах. Очевидно, что их сила и зависимость очень важны. Но что такое металлы? В этом проекте научной ярмарки вы не только узнаете, что такое металл, но и узнаете, как сделать металлы прочнее!

Объектив

Для демонстрации различий в механическом упрочнении двух разных металлов.

Поделитесь своей историей с друзьями по науке!

Да, Я сделал этот проект! Пожалуйста, войдите в систему (или создайте бесплатную учетную запись), чтобы сообщить нам, как все прошло.

Планируете ли вы сделать проект от Science Buddies?

Вернитесь и расскажите нам о своем проекте, используя ссылку «Я сделал этот проект» для выбранного вами проекта.

Вы найдете ссылку «Я сделал этот проект» на каждом проекте на сайте Science Buddies, так что не забудьте поделиться своей историей!

Кредиты

Мишель Марановски, доктор наук, приятели науки

Цитируйте эту страницу

Здесь представлена ​​общая информация о цитировании.Обязательно проверьте форматирование, включая использование заглавных букв, для метода, который вы используете, и обновите цитату по мере необходимости.

MLA Стиль

Сотрудники Science Buddies. «Тяжелая работа - работать твердо! Узнайте, как сделать металлы прочнее». Друзья науки , 23 июня 2020, https://www.sciencebuddies.org/science-fair-projects/project-ideas/MatlSci_p038/materials-science/working-metals-stronger. Доступ 29 октября 2020 г.

APA Style

Сотрудники Science Buddies.(2020, 23 июня). Работать твердо - тяжелая работа! Узнайте, как сделать металлы сильнее. Извлекаются из https://www.sciencebuddies.org/science-fair-projects/project-ideas/MatlSci_p038/materials-science/working-metals-stronger

Дата последнего редактирования: 2020-06-23

Введение

Металлы - часть нашей повседневной жизни. Некоторые металлы прочные и легкие, и их можно использовать для строительства зданий, а другие проводят тепло и электричество.Металлы можно даже сделать очень чистыми, чтобы они могли служить частью искусственного коленного сустава или кардиостимулятора.

Земная кора в основном состоит из кислорода и кремния (74,4%). Но алюминий и железо составляют 8,1% и 5% соответственно. Остальные 12,6 процента приходятся на другие элементов. Неизвестно, когда люди начали работать с металлами, но в какой-то момент Несколько тысячелетий назад человек выяснил, что нагревание определенных пород, называемых рудой , дает материал, которым легко манипулировать и превращаются во всевозможные полезные инструменты и орудия - металл.Золото, самый ковкий () и ковкий () металл, ценилось за его блеск и легкость формования. Из него делали украшения для украшения людей и домов. Ранние люди использовали несколько типов металлов для своих инструментов. и украшения, включая медь, железо, олово, свинец, серебро и золото.

Но что такое металл? Чистый металл - это элемент, состоящий из одного атома типа . Атомы выстраиваются в регулярную структуру, которая повторяется много раз, что называется структурой кристалла .Атомы в кристаллической структуре соединены металлической связью. Металлическое соединение - это то, что позволяет металлам быть отличными температурными и электрическими проводниками , а также иметь высокую пластичность и пластичность. Если провести диагональную линию между бором и полонием в периодической таблице элементов, в нижнем левом углу этой линии будут металлы.

Есть много способов описать свойства металлов. Например, твердость металла описывает способность металла сопротивляться постоянной деформации, а твердость металла описывает способность металла поглощать внезапный удар.Молотки - хороший пример того, как простой инструмент на самом деле не так уж прост. Молоты должны быть твердыми и , чтобы работать хорошо. Часть молотка, которая попадает в гвоздь, должна быть твердой, но за ударной поверхностью молоток должен быть твердым. Если он не жесткий, молоток может сломаться и травмировать пользователя. Металл в молотке необходимо обработать правильно, чтобы убедиться в его работоспособности. Древние японские мастера-самураи использовали твердую и прочную сталь, чтобы создать одно из самых смертоносных боевых орудий в мире.Внешняя оболочка меча - твердая сталь. Кромку из твердой стали можно сделать очень острой; однако он хрупкий, , поэтому вы не захотите делать целый меч из такого металла, потому что он может сломаться во время боя. Сердечник меча сделан из прочной стали, которая может поглощать удары, не ломаясь. Поэтому, когда самурай наносил удар своим мечом, внешняя сталь делала разрез, а сердцевина выдерживала удар от удара. Самурайские мечи были настолько острыми и сильными, что их оценивали по количеству человеческих тел, которые они могли разрезать за один раз!

Рисунок 1. Это пример катаны, самурайского меча. (Википедия, 2008 г.)

Металлы можно комбинировать для получения более прочных металлов. Это называется легированием . Бронза - это сплав меди и олова, латунь - это сплав меди и цинка, а нержавеющая сталь - это сплав углерода, железа и хрома. Сплав обычно каким-то образом улучшает свой исходный материал.

Помимо их комбинирования, есть еще один метод повышения прочности металлов - создание дислокаций внутри металла.Дислокация - это дефект или дефект кристаллической структуры металла. Эти дислокации могут быть вызваны деформацией или изгибом металлов. Определенное количество дислокаций в металле может облегчить перемещение атомов металла по кристаллической структуре, делая металл более прочным. Однако, когда количество дислокаций становится слишком большим, а дислокации расположены слишком близко друг к другу, сопротивление металла движению постепенно увеличивается. Это называется наклепом . За пределами определенной точки металл теряет пластичность и может сломаться.Работа кузнецов мечей или кузнецов заключается в том, чтобы знать, когда металл достигает своего пика и пригоден ли он для обработки.

В этом научном проекте вы будете исследовать наклеп для двух разных металлов: меди и алюминия. Есть ли разница во времени, необходимом для упрочнения этих металлов?

Термины и понятия

  • Элемент
  • Руда
  • Ковкость
  • Пластичность
  • Атом
  • Кристалл
  • Металлическая связка
  • Проводник
  • Твердость
  • Прочность
  • Хрупкий
  • Сплав
  • Вывих
  • Деформационное упрочнение
  • Отжиг

Вопросы

  • Какие примеры металлов и неметаллов? Каково их положение в периодической таблице?
  • Какие термины используются для описания свойств металлов?
  • Для чего нужно закалить металл?
  • Что такое вывих? Что делает дислокация в металле?

Библиография

На следующем веб-сайте обсуждаются металлы и их важность для изготовления самурайского меча.Там также есть быстрая демонстрация металлов.

Этот сайт является хорошим справочником о металлах:

Если вы хотите узнать, как кузнецы изготавливают молотки, посетите этот сайт:

Лента новостей по этой теме

Примечание: Компьютерный алгоритм сопоставления предлагает указанные выше статьи. Это не так умно, как вы, и иногда может давать юмористические, смешные или даже раздражающие результаты! Узнать больше о ленте новостей

Материалы и оборудование

  • Медный лист, 4 дюйма на 4 дюйма.Вы можете приобрести пробную упаковку медных листов различной толщины в Amazon.com.
  • Алюминиевый лист, 4 дюйма на 4 дюйма. Вы можете приобрести образец упаковки алюминиевых листов различной толщины на Amazon.com.
  • Ножницы по металлу для резки образцов; в хозяйственных магазинах
  • Перманентный маркер
  • Молот
  • Чистая поверхность, выдерживающая удары молотком
  • Блокнот лабораторный

Заявление об отказе от ответственности: Science Buddies участвует в партнерских программах с Инструменты для дома, Amazon.ком Каролина Биологический и Jameco Electronics. Доходы от партнерских программ помогают поддерживать Science Buddies, общественной благотворительной организации 501 (c) (3), и делаем наши ресурсы бесплатными для всех. Наш главный приоритет - обучение студентов. Если у вас есть какие-либо комментарии (положительные или отрицательные), связанные с покупками, которые вы сделали для научных проектов по рекомендациям на нашем сайте, сообщите нам об этом. Напишите нам на [email protected]

Методика эксперимента

  1. С помощью ножниц по металлу разрежьте тончайшие медный и алюминиевый лист на четыре полоски равного размера каждая.Когда вы закончите резать, у вас должно быть четыре полоски меди и четыре полоски алюминия. Используя перманентный маркер, пометьте каждую полоску номером, чтобы вы могли отслеживать каждую полоску. На упаковочном листе, поставляемом с упаковками образцов, указана толщина каждого образца. Запишите номер, присвоенный каждой полоске, и ее толщину в лабораторной тетради. Осторожно: Соблюдайте осторожность при обращении с металлическими полосами. Они острые и могут вызвать болезненные порезы.
  2. Составьте таблицы данных в своем лабораторном блокноте, подобные тем, которые показаны ниже.Используйте таблицы для записи ваших данных.
  3. Возьмите две медные полоски. Вы будете экспериментировать с одной полосой и использовать другую полосу для сравнения (или контроля). Отметьте элемент управления буквой «C» в дополнение к номеру, который на нем уже есть.
  4. Положите одну полосу на стол. Ударьте молотком по середине полосы два раза. Поднимите полоску и осторожно надавите на ту сторону, которая не была забита. Полоска жесткая по сравнению с контрольной? Положите ту же полоску и ударьте по ней еще два раза молотком в том же месте, что и раньше.Возьмите полоску и проверьте, не стала ли медная полоска еще более жесткой. Сравните это с контрольной полосой. Запишите свои данные в лабораторную записную книжку. Повторяйте этот шаг, пока медная полоска не начнет затвердевать. Сколько ударов молотком потребовалось? Как выглядит закаленная медь? Он блестящий или тусклый?
  5. Повторите шаги 3 и 4 с двумя другими медными полосками. Всегда держите контрольную полосу в стороне, чтобы вы могли сравнить обработанный металл и контрольную деталь.
  6. Повторите шаги 3-5 с алюминиевыми полосками. Запишите свои данные в лабораторный блокнот. Есть ли разница в том, когда алюминиевая полоса начала затвердевать по сравнению с медной полосой?
  7. Нанесите данные на диаграмму рассеяния. Обозначьте ось X Metals и ось Y «Наименьшее количество ударов для придания жесткости». Чтобы узнать больше о диаграммах рассеяния или построить графики в Интернете, посетите следующий веб-сайт: Создайте график.
0004
Медная полоса 1 Алюминиевая полоса 1
Удары Она застыла? Наблюдения Удары Он застыл? Наблюдения
2 2
4 4 000 0004
8 8
10 10

.

Если вам нравится этот проект, возможно, вам понравятся следующие родственные профессии:

Ученый и инженер-материаловед

Что позволяет создавать высокотехнологичные объекты, такие как компьютеры и спортивное снаряжение? Это материалов, внутри этих продуктов.Материаловеды и инженеры разрабатывают материалы, такие как металлы, керамика, полимеры и композиты, которые нужны другим инженерам для их проектов. Материаловеды и инженеры мыслят атомарно (то есть они понимают вещи на наномасштабном уровне), но они проектируют микроскопически (на уровне микроскопа), а их материалы используются макроскопически (на уровне, который может видеть глаз ). От теплозащитных экранов в космосе, протезов конечностей, полупроводников и солнцезащитных кремов до сноубордов, гоночных автомобилей, жестких дисков и форм для выпечки - материаловеды и инженеры создают материалы, которые делают жизнь лучше.Прочитайте больше

Химик

Все в окружающей среде, будь то естественное происхождение или созданное человеком, состоит из химикатов. Химики ищут и используют новые знания о химических веществах для разработки новых процессов или продуктов. Прочитайте больше

Сварщик

Что общего у гоночных автомобилей, мостов, лодок, компьютеров, велосипедов и сотовых телефонов? Все они требуют сварки или использования инструментов для прочного соединения металлических частей.Навыки сварщиков необходимы для сборки многих предметов, с которыми вы сталкиваетесь и используете каждый день. Карьера сварщика может привести вас в гараж на знаменитые автомобильные гонки, на вершины самых высоких зданий или даже на дно океана! Прочитайте больше

Варианты

  • Влияет ли толщина материала на процесс твердения? Попробуйте повторить эксперимент с разной толщиной медных и алюминиевых листов.
  • Попробуйте согнуть медную трубу. Когда сгибаться становится слишком сложно? Вы также можете использовать паяльную лампу, чтобы уменьшить количество вывихов в трубе. Это называется отжиг . Дайте трубе остыть и посмотрите, как отжиг влияет на изгиб трубы. Для этого варианта рекомендуется присмотр взрослых и соответствующее защитное снаряжение.

Поделитесь своей историей с друзьями по науке!

Да, Я сделал этот проект! Пожалуйста, войдите в систему (или создайте бесплатную учетную запись), чтобы сообщить нам, как все прошло.

Спросите эксперта

Форум «Задайте вопрос эксперту» предназначен для того, чтобы студенты могли найти ответы на научные вопросы, которые они не смогли найти с помощью других ресурсов. Если у вас есть конкретные вопросы о вашем проекте или научной ярмарке, наша команда ученых-добровольцев может вам помочь. Наши специалисты не будут выполнять эту работу за вас, но они сделают предложения, дадут рекомендации и помогут устранить неполадки.

Спросите эксперта

Ссылки по теме

Лента новостей по этой теме

Примечание: Компьютерный алгоритм сопоставления предлагает указанные выше статьи.Это не так умно, как вы, и иногда может давать юмористические, смешные или даже раздражающие результаты! Узнать больше о ленте новостей

Ищете больше научных развлечений?

Попробуйте одно из наших научных занятий для быстрых научных исследований в любое время. Идеально, чтобы оживить дождливый день, школьные каникулы или момент скуки.

Найдите занятие

Видео о нашей науке

Вибрация и звук: заставьте брызги танцевать

Гель-электрофорез и судебная медицина: проект выставки биотехнологической науки

Двухступенчатая воздушная ракета Введение

Спасибо за ваш отзыв!

.

Все о ювелирной проволоке - что такое упрочнение?

Деформационное упрочнение - это термин, обозначающий склонность определенных металлов к затвердеванию при манипуляциях. Очень часто мы намеренно используем наклеп, чтобы придать мягкому металлу прочность и помочь ему сохранить форму. Мы также можем использовать его для придания упругости, например, для серьги-кольца или застежки с защелкой.

Методы упрочнения позволяют нам сознательно изменять температуру проволоки, с которой мы хотим работать, и заставлять ее становиться более прочной.Но имейте в виду, что упрочнение также будет происходить просто в процессе работы с вашим металлом , независимо от того, намерены ли вы этого или нет.

В основном, ювелирную проволоку можно купить с тремя различными уровнями твердости, или «закалки»: абсолютно мягкой, полутвердой и твердой. Мертвой мягкой проволокой очень легко манипулировать, но она слишком мягкая, чтобы сохранять форму после того, как вы ее сформировали, что в некоторых случаях может стать проблемой. Например, если вы хотите сделать пару ушных шв с мертвой мягкой проволокой, вам нужно будет укрепить проволоку до или после того, как вы сделаете швензы, чтобы они не растягивались и не гнулись.

Иногда полутвердой проволоке также может потребоваться немного наклепа, в зависимости от калибра (толщины) проволоки. Жесткую проволоку обычно не нужно подвергать механическому упрочнению, так как она уже имеет самую прочную форму металла и очень хорошо держит форму после формовки.

Для получения дополнительной информации прочтите: основы твердости проволоки и все о калибре проволоки

Ненаучное объяснение:

Не вдаваясь в чрезмерную научность, просто примите во внимание, что каждый раз, когда мы работаем с проволокой и перемещаем ее - будь то изгиб, скручивание, вытягивание, скручивание, молоток и т. Д.- мы перемещаем молекулы металла и сжимаем их все ближе и ближе друг к другу. Чем ближе молекулы, тем тяжелее гнуть проволоку.

Мягкий металл в основном имеет очень рыхлую молекулярную структуру. Мне нравится думать об этом как о приятном и непринужденном. В таком состоянии она очень податлива и снисходительна. Если вы согнете его не в том месте, очень легко просто согнуть его и начать заново. Но помните - сгибание металла и его повторное изгибание сжимают эти молекулы и в этот момент затвердевают.Если вы продолжаете гнуть и разгибать металл в одном и том же месте снова и снова, вы заметите, что он становится все жестче и жестче, и в конечном итоге он просто сломается!

Это потому, что по мере того, как металл становится тверже, он становится более хрупким - чем больше вы нажимаете на него, тем ближе он к пределу прочности и просто трескается, когда его достаточно! (Как я, когда я напряжен и встревожен :)

Имея это в виду, важно упрочнить проволоку ровно настолько, чтобы она соответствовала требованиям конструкции. Если вы переборщите, вы рискуете ослабить конструкцию, сделав ее слишком хрупкой, что полностью противоречит цели механического упрочнения!

Свойства металла, описанные выше, применимы к цветным металлам, таким как серебро, золото, латунь и медь.И хотя они похожи, каждый из них имеет свои особенности, с которыми стоит ознакомиться.

Конечно, существует также множество других ювелирных металлов, которые могут вести себя совершенно по-другому, поэтому вам нужно будет изучить свойства вашего конкретного материала, прежде чем работать с ним. Например, мой опыт работы с алюминиевой проволокой показывает, что она становится хрупкой и ломается быстрее, вместо того, чтобы затвердевать и становиться прочнее, как другие металлы, которые я только что упомянул.Вместо того, чтобы пытаться работать с твердой алюминиевой проволокой, вероятно, лучше начать с более толстого калибра, обеспечивающего необходимую прочность.

Я предлагаю потренироваться с несколькими обрывками материалов, с которыми вы хотите работать, - и обязательно делайте это для каждого нового металла, который вы пробуете, - чтобы вы могли увидеть и почувствовать, насколько легко металл реагирует на ваш метод упрочнения. планируйте использование или даже как он реагирует на работу с вашими руками и вашими инструментами. Лучший способ познакомиться с новым материалом - взять его в руки и работать с ним!

Прочтите все о материалах ювелирной проволоки для получения дополнительной информации .

Хотя вы можете закалить мягкий металл, вы также можете обратить этот процесс, нагревая металл до определенной температуры (обычно с помощью пламенной горелки), чтобы вернуть молекулы в их расслабленное размягченное состояние. Этот процесс называется «отжигом» и обычно не требуется при базовой работе с проволокой, поэтому мы отложим отжиг для другого урока!

После всех этих разговоров о том, когда и зачем работать над закалкой металла, вы, вероятно, задаетесь вопросом, как именно это делать.

Существует несколько методов деформационного упрочнения металла, включая вытягивание, удар, скручивание и переворачивание.Я подробно описал все эти методы в отдельной статье, чтобы не иметь самого длинного сообщения в блоге в истории Интернета;)

Прочтите, как работать с твердой ювелирной проволокой, чтобы узнать, как использовать эти методы!

Если вы новичок в изготовлении украшений из проволоки, то остальная часть этой серии «Все о ювелирных изделиях из проволоки» будет очень полезна!

Часть 1: Калибры проволоки
Часть 2: Твердость проволоки
Часть 3: Формы ювелирной проволоки
Часть 4: Материалы ювелирной проволоки
Часть 5: Какой калибр проволоки для чего?
Часть 6: (вы здесь)
Часть 7: Как работать Закаленная ювелирная проволока

Большое спасибо за чтение.У вас есть вопросы? Дайте мне знать в комментариях ниже :)

Связанные

.

Деформационное упрочнение - Wikiwand,

Деформационное упрочнение - Wikiwand

Для более быстрой навигации этот iframe предварительно загружает страницу Wikiwand для Повышение эффективности работы .

Подключено к:
{{:: readMoreArticle.title}}

Из Википедии, свободной энциклопедии

{{bottomLinkPreText}} {{bottomLinkText}} Эта страница основана на статье в Википедии, написанной участники (читать / редактировать).
Текст доступен под Лицензия CC BY-SA 4.0; могут применяться дополнительные условия.
Изображения, видео и аудио доступны по соответствующим лицензиям.
{{current.index + 1}} из {{items.length}}

Спасибо за жалобу на это видео!

Пожалуйста, помогите нам решить эту ошибку, написав нам по адресу support @ wikiwand.com
Сообщите нам, что вы сделали, что вызвало эту ошибку, какой браузер вы используете и установлены ли у вас какие-либо специальные расширения / надстройки.
Спасибо! .

Смотрите также