Что такое электропроводность металлов


Электропроводность металлов

Классическая теория электропроводности металлов зародилась в начале ХХ века. ЕЕ основоположником стал немецкий физик Карл Рикке. Он опытным путем установил, что прохождение заряда через металл не сопряжено с переносом атомов проводника, в отличие от жидких электролитов. Однако это открытие не объяснило, что именно является носителем электрических импульсов в структуре металла.


Ответить на это вопрос позволили опыты ученых Стюарта и Толмена, проведенные в 1916 году. Им удалось установить, что за перенос электричества в металлах отвечают мельчайшие заряженные частицы - электроны. Это открытие легло в основу классической электронной теории электропроводности металлов. С этого момента началась новая эпоха исследований металлических проводников. Благодаря полученным результатам мы сегодня имеем возможность пользоваться бытовыми приборами, производственным оборудованием, станками и многими другими устройствами.

 

Как отличается электропроводность разных металлов?

 

Электронная теория электропроводности металлов получила развитие в исследованиях Паулю Друде. Он сумел открыть такое свойство как сопротивление, которое наблюдается при прохождении электрического тока через проводник. В дальнейшем это позволит классифицировать разные вещества по уровню проводимости. Из полученных результатов легко понять, какой металл подойдет для изготовления того или иного кабеля. Это очень важный момент, так как неправильно подобранный материал может стать причиной возгорания в результате перегрева от прохождения тока избыточного напряжения.


Наибольшей электропроводностью обладает металл серебро. При температуре +20 градусов по Цельсию она составляет 63,3*104 сантиметров-1. Но изготавливать проводку из серебра очень дорого, так как это довольно редкий металл, который используется в основном для производства ювелирных и декоративных украшений или инвестиционных монет.

 

 

Металл, обладающий самой высокой электропроводностью среди всех элементов неблагородной группы - медь. Ее показатель составляет 57*104 сантиметров-1 при температуре +20 градусов по Цельсию. Медь является одним из наиболее распространенных проводников, которые используются в бытовых и производственных целях. Она хорошо выдерживает постоянные электрические нагрузки, отличается долговечностью и надежностью. Высокая температура плавления позволяет без проблем работать долгое время в нагретом состоянии.

 

 

По распространенности с медью может конкурировать только алюминий, который занимает четвертое место по электропроводности после золота. Он используется в сетях с невысоким напряжением, так как имеет почти вдвое меньшую температуру плавления, чем медь, и не способен выдерживать предельные нагрузки. С дальнейшим распределением мест можно ознакомиться, взглянув на таблицу электропроводности металлов.

 

 

Стоит отметить, что любой сплав обладает гораздо меньшей проводимостью, чем чистое вещество. Это связано со слиянием структурной сетки и как следствие нарушением нормального функционирования электронов. Например, при производстве медного провода используется материал с содержанием примесей не более 0,1%, а для некоторых видов кабеля этот показатель еще строже - не более 0,05%. Все приведенные показатели являются удельной электропроводностью металлов, которая рассчитывается как отношение между плотностью тока и величиной электрического поля в проводнике.

 

Классическая теория электропроводности металлов

 

Основные положения теории электропроводности металлов содержат шесть пунктов. Первый: высокий уровень электропроводности связан с наличием большого числа свободных электронов. Второй: электрический ток возникает путем внешнего воздействия на металл, при котором электроны из беспорядочного движения переходят в упорядоченное.


Третий: сила тока, проходящего через металлический проводник, рассчитывается по закону Ома. Четвертый: различное число элементарных частиц в кристаллической решетке приводит к неодинаковому сопротивлению металлов. Пятый: электрический ток в цепи возникает мгновенно после начала воздействия на электроны. Шестой: с увеличением внутренней температуры металла растет и уровень его сопротивления.


Природа электропроводности металлов объясняется вторым пунктом положений. В спокойном состоянии все свободные электроны хаотическим образом вращаются вокруг ядра. В этот момент металл не способен самостоятельно воспроизводить электрические заряды. Но стоит лишь подключить внешний источник воздействия, как электроны мгновенно выстраиваются в структурированной последовательности и становятся носителями электрического тока. С повышением температуры электропроводность металлов снижается.

 

 

 

Это связано с тем, что слабеют молекулярные связи в кристаллической решетке, элементарные частицы начинают вращаться в еще более хаотичном порядке, поэтому построение электронов в цепь усложняется. Поэтому необходимо принимать меры по недопущению перегрева проводников, так как это негативно сказывается на их эксплуатационных свойствах. Механизм электропроводности металлов невозможно изменить ввиду действующих законов физики. Но можно нивелировать негативные внешние и внутренние воздействия, которые мешают нормальному протеканию процесса.

 

Металлы с высокой электопроводностью

 

Электропроводность щелочных металлов находится на высоком уровне, так как их электроны слабо привязаны к ядру и легко выстраиваются в нужной последовательности. Но эта группа отличается невысокими температурами плавления и огромной химической активностью, что в большинстве случаев не позволяет использовать их для изготовления проводов.


Металлы с высокой электропроводностью в открытом виде очень опасны для человека. Прикосновение к оголенному проводу приведет к получению электрического ожога и воздействию мощного разряда на все внутренние органы. Зачастую это влечет мгновенную смерть. Поэтому для безопасности людей используются специальные изоляционные материалы.


В зависимости от сферы применения они могут быть твердыми, жидкими и газообразными. Но все типы предназначены для одной функции - изоляции электрического тока внутри цепи, чтобы он не мог оказывать воздействие на внешний мир. Электропроводность металлов используется практически во всех сферах современной жизни человека, поэтому обеспечение безопасности является первоочередной задачей.

Что такое электропроводность? (с изображением)

Электропроводность (EC) - это свойство, которое используется для описания того, насколько хорошо материалы позволяют электронам течь. Он определяется с помощью экспериментов и математических уравнений. Электропроводность обратно пропорциональна удельному сопротивлению, то есть чем выше проводимость, тем ниже удельное сопротивление. Проводник - это материал с высокой электропроводностью, а изолятор - это материал с высоким удельным электрическим сопротивлением. Оба свойства зависят от температуры и чистоты материалов.

Линии электропередач выполнены из токопроводящих материалов.

Температурная зависимость электропроводности имеет общий характер. Металл является проводником, и он имеет более низкую проводимость при более высоких температурах. Стекло является изолятором и показывает более высокую проводимость при более высоких температурах.

При очень высоких температурах проводники ведут себя как изоляторы, а изоляторы как проводники. Такое поведение диэлектриков и проводников объясняется моделью свободных электронов. В этой модели проводники ясно демонстрируют способность освобождать электроны, и когда применяется ток или электрическая сила, сила может легко проталкивать лишние электроны.

Почва представляет собой смесь минералов, солей и органических материалов. Он имеет особую электропроводность, называемую электропроводностью почвы, которая измеряет количество соли в образце почвы, называемое ее засолением. С помощью этого процесса можно также измерить другие свойства почвы, где засоление достаточно низкое.Эти свойства связаны с влиянием чистоты на данные ЕС.

Данные

EC для образца почвы могут определить количество примесей в почве. Примеси почвы - вода, воздух и минералы. Каждая примесь по-разному влияет на данные, но опытный почвовед может определить эту информацию из собранных данных.Как правило, большее количество примесей снижает ЕС, за исключением минералов, которые повышают ЕС. Примеси также могут объяснить использование чистой меди в электропроводке.

Металлы часто состоят из сплавов, состоящих из двух или более элементов. Это бесполезно для проведения электричества.Металлы в сплавах - это не одни и те же элементы, и электроны не могут легко перемещаться между разными элементами. Чистые металлы, например медная проволока, обладают высокой электропроводностью. Это применимо только к твердым металлам, поскольку воздушные карманы могут снизить электропроводность материалов.

Материалы, не являющиеся металлами, обычно являются хорошими изоляторами.Лучшие изоляторы - это материалы, в которых естественно есть воздушные карманы, например резина. Воздушные карманы похожи на примеси и нарушают поток электронов. Лучшими естественными изоляторами являются газы, например воздух. Современная химия освоила изоляторы, создав материалы с удельным сопротивлением в тысячи раз больше, чем воздух.

.

Электропроводность элементов и других материалов

  • Проводники - это материалы со слабо прикрепленными валентными электронами - электроны могут свободно дрейфовать между атомами
  • Изоляторы имеют структуры, в которых электроны связаны с атомами ионными или ковалентными связями - ток практически отсутствует. flow
  • Полупроводники - это изолирующие материалы, в которых связи могут быть разорваны под действием приложенного напряжения - электроны могут высвобождаться и перемещаться с одного освобожденного валентного узла на другой.

Электропроводность

Электропроводность или удельная проводимость - это мера способности материала проводить электрический ток. Электропроводность является обратной (обратной) величиной удельного электрического сопротивления.

Электропроводность определяется как отношение плотности тока к напряженности электрического поля и может быть выражена как

σ = J / E (1)

, где

σ = электрическая проводимость (1 / Ом · м, 1/ Ом м, сименс / м, См / м, mho / m)

Дж = плотность тока (ампер / м 2 )

E = электрический напряженность поля (вольт / м)

One siemens - S - эквивалентна одному ому и также обозначается как one mho.

Электропроводность некоторых распространенных материалов

Материал Электропроводность
- σ -
(1 / Ом · м, См / м, МО / м)
Алюминий 37,7 10 6
Бериллий 31,3 10 6
Кадмий 13,8 10 6
Кальций 29.8 10 6
Хром 7,74 10 6
Кобальт 17,2 10 6
Медь 59,6 10 6
Медь - отожженная 58,0 10 6
Галлий 6,78 10 6
Золото 45,2 10 6
Иридий 19.7 10 6
Железо 9,93 10 6
Индий 11,6 10 6
Литий 10,8 10 6
Магний 22,6 10 6
Молибден 18,7 10 6
Никель 14,3 10 6
Ниобий 6.93 10 6
Осмий 10,9 10 6
Палладий 9,5 10 6
Платина 9,66 10 6
Калий 13,9 10 6
Рений 5,42 10 6
Родий 21,1 10 6
Рубидий 7.79 10 6
Рутений 13,7 10 6
Серебро 63 10 6
Натрий 21 10 6
Стронций 7,62 10 6
Тантал 7,61 10 6
Технеций 6,7 10 6
Таллий 6.17 10 6
Торий 6,53 10 6
Олово 9,17 10 6
Вольфрам 18,9 10 6
Цинк 16,6 10 6
Морская вода 4,5 - 5,5
Вода - питьевая 0,0005 - 0,05
Вода - деионизированная 5.5 10 -6

Электропроводность элементов относительно серебра

900,6
Элемент Электропроводность относительно серебра
Серебро 100,0
Медь 97,6
Золото 76,6
Алюминий 63,0
Тантал 54,6
Магний 39.4
Натрий 32,0
Бериллий 31,1
Барий 30,6
Цинк 29,6
Индий 27,0
Кадмий
Кальций 21,8
Рубидий 20,5
Цезий 20,0
Литий 18.7
Молибден 17,6
Кобальт 16,9
Уран 16,5
Хром 16,0
Марганец 15,8
Платина 14,4
Олово 14,4
Вольфрам 14,0
Осмий 14.0
Титан 13,7
Иридий 13,5
Рутений 13,2
Никель 12,9
Родий 12,6
Палладий Палладий
Сталь 12,0
Таллий 9,1
Свинец 8,4
Колумбий 5.1
Ванадий 5,0
Мышьяк 4,9
Сурьма 3,6
Ртуть 1,8
Висмут 1,4
Теллур 0,0

Электропроводность высокоочищенной воды

Удельное электрическое сопротивление

Электропроводность обратно пропорциональна удельному электрическому сопротивлению.Удельное электрическое сопротивление может быть выражено как

ρ = 1/ σ (2)

, где

ρ = удельное электрическое сопротивление (Ом · м 2 / м, Ом · м)

Сопротивление проводника

Сопротивление проводника можно выразить как

R = ρ l / A (3)

, где

R = сопротивление (Ом, Ом)

l = длина проводника (м)

A = площадь поперечного сечения проводника (м 2 )

Пример - сопротивление провода

Сопротивление 1000 м сечение медного провода # 10 с площадью поперечного сечения 5.26 мм 2 можно рассчитать как

R = (1,724 x 10 -8 Ом м 2 / м) (1000 м) / (( 5,26 мм 2 ) (10 - 6 м 2 / мм 2 ))

= 3,2 Ом

Преобразование удельного сопротивления и проводимости

900
Гран / галлон
как CaCO 3
ppm
как CaCO 3
ppm
NaCl
Электропроводность
мкмхо / см
Удельное сопротивление
МОм / см
99.3 1700 2000 3860 0,00026
74,5 1275 1500 2930 0,00034
49,6 850 1000 1990 0,00050
24,8 425 500 1020 0,00099
9,93 170 200 415 0.0024
7,45 127 150 315 0,0032
4,96 85,0 100 210 0,0048
2,48 42,5 50 105 0,0095
0,992 17,0 20 42,7 0,023
0,742 12,7 15 32.1 0,031
0,496 8,50 10 21,4 0,047
0,248 4,25 5,0 10,8 0,093
0,099 1,70 2,0 4,35 0,23
0,074 1,27 1,5 3,28 0,30
0,048 0.85 1,00 2,21 0,45
0,025 0,42 0,50 1,13 0,88
0,0099 0,17 0,20 0,49 2,05
0,13 0,15 0,38 2,65
0,0050 0,085 0,10 0,27 3.70
0,0025 0,042 0,05 0,16 6,15
0,00099 0,017 0,02 0,098 10,2
0,00070 0,012 0,01587 11,5
0,00047 0,008 0,010 0,076 13,1
0,00023 0.004 0,005 0,066 15,2
0,00012 0,002 0,002 0,059 16,9
  • зерна / галлон = 17,1 частей на миллион CaCO 3
Растворы

Электропроводность водных растворов, таких как

  • NaOH 4 - Каустическая сода
  • NH 4 Cl - Хлорид аммония, соляной аммиак
  • NaCl 2 - Поваренная соль
  • NaNO 3 - Нитрат натрия , Чилийская селитра
  • CaCl 2 - Хлорид кальция
  • ZnCl 2 - Хлорид цинка
  • NaHCO 3 - Бикарконат натрия, пищевая сода
  • Кальцинированный натрий 2 CO 3 2 CO 3 карбонат натрия
  • CuSO 4 - Медный купорос, медный купорос

.

Почему металлы так хорошо проводят тепло и электричество?

Структура металлов

Структуры чистых металлов описать просто, поскольку атомы, образующие эти металлы, можно рассматривать как идентичные совершенные сферы. Более конкретно, металлическая структура состоит из «выровненных положительных ионов» (катионов) в «море» делокализованных электронов. Это означает, что электроны могут свободно перемещаться по структуре и обуславливают такие свойства, как проводимость.

Какие бывают виды облигаций?

Ковалентные облигации

Ковалентная связь - это связь, которая образуется, когда два атома разделяют электроны. Примерами соединений с ковалентными связями являются вода, сахар и диоксид углерода.

Ионные связи

Ионная связь - это полный перенос валентных электронов между металлом и неметаллом. В результате возникают два противоположно заряженных иона, которые притягиваются друг к другу.В ионных связях металл теряет электроны, чтобы стать положительно заряженным катионом, тогда как неметалл принимает эти электроны, чтобы стать отрицательно заряженным анионом. Примером ионной связи может быть соль (NaCl).

Металлические облигации

Металлическая связь - это результат электростатической силы притяжения, которая возникает между электронами проводимости (в форме электронного облака делокализованных электронов) и положительно заряженными ионами металлов.Это можно описать как распределение свободных электронов между решеткой положительно заряженных ионов (катионов). Металлическое соединение определяет многие физические свойства металлов, такие как прочность, пластичность, термическое и электрическое сопротивление и проводимость, непрозрачность и блеск.

Делокализованные движущиеся электроны в металлах -

Это свободное движение электронов в металлах, которое придает им проводимость.

Электропроводность

Металлы содержат свободно движущиеся делокализованные электроны.Когда прикладывается электрическое напряжение, электрическое поле внутри металла вызывает движение электронов, заставляя их перемещаться от одного конца к другому концу проводника. Электроны будут двигаться в положительную сторону.

Электроны текут к положительному выводу

Теплопроводность

Металл хорошо проводит тепло.Проводимость возникает, когда вещество нагревается, частицы получают больше энергии и больше вибрируют. Затем эти молекулы сталкиваются с соседними частицами и передают им часть своей энергии. Затем это продолжается и передает энергию от горячего конца к более холодному концу вещества.

Почему металлы так хорошо проводят тепло?

Электроны в металле - это делокализованные электроны и свободно движущиеся электроны, поэтому, когда они набирают энергию (тепло), они вибрируют быстрее и могут перемещаться, это означает, что они могут быстрее передавать энергию.

Какие металлы проводят лучше всего?

Вверху: Электронные оболочки Золото (au), Серебро (Ag), Медь (Cu) и Цинк (Zn). По логике можно было бы подумать, что Золото - лучший проводник, имеющий единственный s-орбитальный электрон в последней оболочке (диаграмма выше)... так почему серебро и медь на самом деле лучше (см. таблицу ниже).

Электропроводность металлов

> С / м

Серебро 6,30 × 10 7
Медь 5,96 × 10 7
Золото 4.10 × 10 7
Алюминий 3,50 × 10 7
цинк 1,69 × 10 7

Серебро имеет больший атомный радиус (160 мкм), чем золото (135 мкм), несмотря на то, что в золоте больше электронов, чем в серебре! Причину этого см. В комментарии ниже.

Примечание: Серебро является лучшим проводником, чем золото, но золото более желательно, потому что оно не подвержено коррозии.(Медь является наиболее распространенной, потому что она наиболее экономична) Ответ немного сложен, и мы размещаем здесь один из лучших ответов, которые мы видели для тех, кто знаком с материалом.

"Серебро находится в середине переходных металлов примерно на 1/2 пути между благородными газами и щелочными металлами. В столбце 11 периодической таблицы все эти элементы (медь, серебро и золото) имеют единичный s -орбитальный электрон электрон внешней оболочки (платина также, в столбце 10).


Орбитальная структура электронов этих элементов не имеет особого сродства приобретать или терять электрон по отношению к более тяжелым или легким благородным газам, потому что они находятся на полпути между ними. В общем, это означает, что не требуется много энергии, чтобы временно сбить электрон или добавить его. Удельное сродство к электрону и потенциалы ионизации варьируются, и что касается проводимости, наличие относительно низких энергий для этих двух критериев в некоторой степени важно.

Если бы это были единственные критерии, то золото было бы лучшим проводником, чем серебро, но у золота есть дополнительные 14 f-орбитальных электронов под 10 d-орбитальными электронами и единственным s-орбитальным электроном. 14 f-электронов связаны с дополнительными атомами в ряду актинидов. С 14 дополнительными электронами, которые, по-видимому, выталкивают d- и s-электроны, можно подумать, что s-электрон просто «созрел» для проводимости (почти не требовалось энергии, чтобы оттолкнуть его), но НЕТ. Электроны на f-орбите упакованы таким образом, что это приводит к тому, что атомный радиус золота на самом деле МЕНЬШЕ, чем атомный радиус серебра - не намного, но он меньше. Меньший радиус означает большую силу со стороны ядра на внешние электроны, поэтому серебро побеждает в «соревновании» проводимости. Помните, сила электрического заряда обратно пропорциональна квадрату расстояния. Чем ближе 2 заряда вместе, тем выше сила между ними.

И медь, и платина имеют еще меньший диаметр; следовательно, большее притяжение от ядра, следовательно, больше энергии, чтобы сбить одинокий s-электрон, следовательно, более низкая проводимость.

Другие элементы с единственным s-орбитальным электроном, находящимся там, «созревшим для того, чтобы появился сборщик проводимости», также имеют меньшие атомные радиусы (молибден, ниобий, хром, рутений, родий), чем серебро.

Таким образом, именно то место, где оно находится, то место, где «мать-природа» поместила серебро в периодической таблице, определяет его превосходную проводимость ».

Источник из фунтов101 Yahoo

ВЫБОР ИСТОЧНИКОВ И ЧИТАТЕЛЕЙ -

Структура и физические свойства металлов

Почему одни металлы проводят тепло лучше, чем другие?

Как передается тепло?

Теплопроводность металлов

.

Электрические характеристики

Электропроводность и удельное сопротивление

Хорошо известно, что одной из субатомных частиц атома является электрон. Электроны несут отрицательный электростатический заряд и при определенных условиях могут перемещаться от атома к атому. Направление движения между атомами случайно, если только сила не заставляет электроны двигаться в одном направлении. Это направленное движение электронов за счет электродвижущей силы известно как электричество.

Электропроводность
Электропроводность - это мера того, насколько хорошо материал переносит движение электрического заряда. Это отношение плотности тока к напряженности электрического поля. Его производная единица СИ - Сименс на метр , но значения проводимости часто указываются в процентах IACS. IACS - это аббревиатура от Международного стандарта отожженной меди, который был установлен Международной электрохимической комиссией 1913 года. (Дополнительная информация о МАКО.) Электропроводность отожженной меди (5,8001 x 10 7 См / м) определена как 100% IACS при 20 ° C. Все остальные значения проводимости связаны с этой проводимостью отожженной меди. Следовательно, железо со значением проводимости 1,04 x 10 7 См / м имеет проводимость примерно 18% от проводимости отожженной меди, и это указано как 18% IACS. Интересно отметить, что коммерчески чистая медная продукция теперь часто имеет значения проводимости IACS, превышающие 100% IACS, поскольку методы обработки улучшились с момента принятия стандарта в 1913 году, и теперь из металла можно удалить больше примесей.

Значения проводимости в Сименсах на метр можно преобразовать в% IACS, умножив значение проводимости на 1,7241 x10 -6 . Когда значения проводимости указываются в микросименсах на сантиметр, значение проводимости умножается на 172,41 для преобразования в значение% IACS.

Электропроводность - очень полезное свойство, поскольку на значения влияют такие факторы, как химический состав веществ и напряженное состояние кристаллических структур. Следовательно, информацию об электропроводности можно использовать для измерения чистоты воды, сортировки материалов, проверки правильности термической обработки металлов и проверки некоторых материалов на предмет теплового повреждения.

Удельное электрическое сопротивление
Удельное электрическое сопротивление обратно пропорционально проводимости. Это противостояние тела или вещества протеканию через него электрического тока, в результате которого электрическая энергия превращается в тепло, свет или другие формы энергии. Величина сопротивления зависит от типа материала. Материалы с низким удельным сопротивлением являются хорошими проводниками электричества, а материалы с высоким удельным сопротивлением - хорошими изоляторами.

Единицей измерения удельного электрического сопротивления в системе СИ является омметр.Значения удельного сопротивления чаще всего выражаются в единицах микроом-сантиметра. Как упоминалось выше, значения удельного сопротивления просто обратно пропорциональны проводимости, поэтому преобразование между ними не вызывает затруднений. Например, материал с удельным сопротивлением два микроом-сантиметра будет иметь удельную проводимость ½ микросименса / сантиметр. Значения удельного сопротивления в микрометрах-сантиметрах можно преобразовать в% значений проводимости IACS по следующей формуле:

172,41 / удельное сопротивление =% IACS

Температурный коэффициент удельного сопротивления
Как указано выше, значения электропроводности (и значения удельного сопротивления) обычно являются сообщается при 20 o C.Это сделано потому, что проводимость и удельное сопротивление материала зависят от температуры. Электропроводность большинства материалов снижается с повышением температуры. С другой стороны, удельное сопротивление большинства материалов увеличивается с повышением температуры. Величина изменения зависит от материала, но была установлена ​​для многих элементов и инженерных материалов.

Причина того, что удельное сопротивление увеличивается с повышением температуры, заключается в том, что количество дефектов в структуре атомной решетки увеличивается с температурой, и это затрудняет движение электронов.К этим недостаткам относятся дислокации, вакансии, межузельные дефекты и примесные атомы. Кроме того, выше абсолютного нуля даже атомы решетки участвуют в интерференции направленного движения электронов, поскольку они не всегда находятся в своих идеальных узлах решетки. Тепловая энергия заставляет атомы колебаться около своего положения равновесия. В любой момент времени многие отдельные атомы решетки будут находиться далеко от своих идеальных узлов решетки, и это будет мешать движению электронов.

Если температурный коэффициент известен, скорректированное значение удельного сопротивления может быть вычислено по следующей формуле:

R 1 = R 2 * [1 + a * (T 1 –T 2 )]

Где: R 1 = значение удельного сопротивления, приведенное к T 1
R 2 = значение удельного сопротивления, известное или измеренное при температуре T 2
a = Температурный коэффициент
T 1 = Температура, при которой значение удельного сопротивления необходимо знать
T 2 = Температура, при которой было получено известное или измеренное значение

Например, предположим, что измерения удельного сопротивления проводились на раскаленном куске алюминия.Обычно при измерении удельного сопротивления или проводимости прибор калибруется с использованием стандартов, имеющих ту же температуру, что и измеряемый материал, и в этом случае поправка на температуру не требуется. Однако, если калибровочный стандарт и исследуемый материал имеют разные температуры, необходимо внести поправку в измеренное значение. Предположим, что прибор был откалиброван при 20 o C (68 o F), но измерения были выполнены при 25 o C (77 o F), и полученное значение удельного сопротивления было равно 2.706 x 10 -8 Ом метров. Используя приведенное выше уравнение и следующее значение температурного коэффициента, можно рассчитать значение удельного сопротивления с поправкой на температуру.

R 1 = R 2 * [1 + a * (T 1 –T 2 )]

Где: R 1 =?
R 2 = 2,706 x 10 -8 Ом · м (измеренное удельное сопротивление при 25 o C)
a = 0,0043 / o C
T 1 = 20 o C
T 2 = 25 o C

R 1 = 2.706 x 10 -8 Ом · метров * [1 + 0,0043 / o C * (20 o C - 25 o C)]

R 1 = 2,648 x 10 -8 Ом · метров

Обратите внимание, что значение удельного сопротивления было скорректировано в сторону уменьшения, поскольку в этом примере использовалось вычисление удельного сопротивления для более низкой температуры.

Так как проводимость просто обратно пропорциональна удельному сопротивлению, температурный коэффициент такой же для проводимости, и уравнение требует лишь незначительной модификации.Уравнение принимает следующий вид:

s 1 = s 2 / [1 + a * (T 1 –T 2 )]

Где: s 1 = значение проводимости, скорректированное на T 1
с 2 = значение проводимости, известное или измеренное при температуре T 2
a = Температурный коэффициент
T 1 = Температура, при которой необходимо знать значение проводимости
T 2 = Температура, при которой известное или измеренное значение было получено

В данном примере рассмотрим тот же алюминиевый сплав с температурным коэффициентом 0.0043 на градус Цельсия и проводимость 63,6% IACS при 25 o C. Какая будет проводимость, если установить значение 20 o C?

с 1 = 63,6% IACS / [1 + 0,0043 * (20 o C - 25 o C)]

с 1 = 65,0% IASC

Температурный коэффициент для нескольких металлических элементов показано ниже.

Материал

Температурный коэффициент (/ o C)

Никель

0.0059

Утюг

0,0060

молибден

0,0046

Вольфрам

0,0044

Алюминий

0.0043

Медь

0,0040

Серебро

0,0038

Платина

0,0038

Золото

0.0037

цинк

0,0038

.

Смотрите также