Что такое дислокация металлов


Дислокации – основы материаловедения | Техника и Программы

Дислокации — линейные дефекты кристаллической решетки типа обрыва или сдвига атомных плоскостей, нарушающие правильность их чередования. Энергия образования дислокаций существенно выше энергии образования точечных дефектов, поэтому они не могут существовать в измеримых концентрациях как термодинамически устойчивые дефекты. Они легко образуются при выращивании монокристаллов или эпитаксиальных пленок, сопровождающемся термическими, механическими и концентрационными напряжениями, приводящими к пластической деформации кристалла. Часть дислокаций может сохраняться в кристалле даже после самого тщательного отжига. Более подробно вопрос о причинах возникновения дислокаций будет рассмотрен при обсуждении методов выращивания монокристаллов и эпитаксиальных пленок (см. гл. 6

Рис. 3.4. а — Схема образования краевой дислокации. б — Расположение атомов вокруг краевой дислокации в простой кубической решетке.

и гл. 9), так как он имеет огромное значение для технологии полупроводников.

Поскольку дислокации при небольших концентрациях распределены по объему кристалла неравномерно, то нарушения свойств кристалла, обусловленные их присутствием, локализованы в небольших объемах, окружающих дислокации. Следовательно, кинетика процессов, протекающих вблизи этих дефектов, будет иной, чем в объеме кристалла, где дислокации отсутствуют.

Различают простые и смешанные дислокации. К простым дислокациям относят краевые и винтовые.

Рассмотрим кристалл, в котором в результате приложения внешних сил одна часть начинает смещаться относительно другой по некоторой плоскости (плоскости скольжения) вдоль некоторого выбранного направления (направления сдвига), то есть кристалл подвергается пластической деформации сдвига путем скольжения (рис. 3.4,а). Перемещения атомов по плоскости скольжения не являются равномерными, так как сдвиг на единицу скольжения происходит только в одной части кристалла, а в остальной части сдвиг полностью отсутствует. Перпендикулярную направлению сдвига линию AD, расположенную внутри кристалла и являющуюся границей между этими двумя частями кристалла, называют линией краевой дислокации и обозначают ⊥. Расположение атомов внутри деформированного скольжением кристалла в плоскости, перпендикулярной линии AD, имеет вид, изображенный на рис. 3.4,б. Атом, расположенный непосредственно над знаком дислокации ⊥, имеет окружение, отличающееся от окружения атомов в бездефектной части кристалла. Все происходит так, как если бы в объеме кристалла появилась

Рис.  3.5.  Схема  образования  винтовой дислокации.

одна «лишняя» атомная плоскость, край которой обрывается внутри кристалла. Краевая дислокация, таким образом, представляет собой дефект, при котором одна из атомных плоскостей обрывается внутри кристалла по линии краевой дислокации AD, перпендикулярной направлению сдвига. Краевые дислокации образуются вдоль плоскостей скольжения. Условно подразделяют краевые дислокации на положительные и отрицательные. Положительная дислокация соответствует случаю, когда «лишняя» атомная плоскость находится сверху над знаком ⊥ (рис. 3.4,б) и в

верхней половине кристалла действуют сжимающие напряжения, в ниж

ней — растягивающие; а отрицательная — случаю, когда «лишняя» атомная плоскость находится снизу под знаком ⊥, то есть верхняя половина

кристалла растянута, а нижняя сжата.

Сдвиг одной части кристалла относительно другой, возникающий под влиянием внешних воздействий, может деформировать кристалл таким образом, что его можно представить состоящим из атомных плоскостей, закрученных в виде винтовой лестницы, ось которой и образует линию винтовой  дислокации AD  (рис. 3.5  и  рис.  3.6).  Винтовая  дислокация

обозначается ⊗. Линия винтовой дислокации характеризуется тем, что

она параллельна направлению сдвига. При каждом обходе вокруг нее

мы поднимаемся или опускаемся на одно межплоскостное расстояние (рис. 3.6). Выход винтовой дислокации на поверхность кристалла заканчивается незарастающей ступенькой. В отличие от краевой дислокации, винтовая дислокация не имеет «лишних» плоскостей и может образовываться при сдвиге по любой атомной плоскости, проходящей через линию дислокации AD, то есть она не определяет однозначно плоскость скольжения. Различают правые и левые винтовые дислокации, причем направление вращения играет ту же роль, что и знак у краевых дислокаций.

Следует отметить, что в кристаллах полупроводников в чистом виде краевая и винтовая дислокации встречаются редко. Как правило, они по

Рис. 3.6. а  — Винтовая дислокация. б — Расположение атомов на винтовой поверхности вдоль винтовой дислокации.

являются одновременно, приводя к образованию смешанных форм, при этом линия результирующей дислокации (граница между сдвинутой и не сдвинутой частями кристалла) не обязательно должна быть прямой, она может представлять собой произвольную кривую. Криволинейную дислокацию произвольной формы, которую можно представить как состоящую из различных комбинаций «чистых» краевой и винтовой дислокаций, называют смешанной. На рис. 3.7 показана смешанная дислокация в простой кубической решетке.

Основной характеристикой дислокации является вектор Бюргерса (вектор сдвига) b. Вектор Бюргерса — это мера искажений решетки, обусловленных присутствием дислокации. Для его определения строят замкнутый контур в кристалле с дефектом и контур, проходящий через те же атомы, в кристалле без дефекта. Проведем в решетке, содержащей краевую дислокацию, замкнутый контур A-B-C-D-A вокруг этой дислокации, начав его из произвольно взятого узла A и откладывая против часовой стрелки определенное число межатомных расстояний (рис. 3.8). Если построить тот же контур в решетке без дислокации, откладывая такое же число межатомных расстояний, то контур окажется незамкнутым. Вектор b, который необходимо добавить, чтобы замкнуть контур, и есть вектор Бюргерса. Величина разрыва контура характеризует сумму всех упругих смещений решетки, накопившихся в области вокруг дислокации. Для примера, изображенного на рис. 3.8 (простая кубическая решетка), вектор Бюргерса по абсолютной величине равен расстоянию между соседними атомами и ориентирован перпендикулярно линии дислокации.

Аналогичное построение для винтовой дислокации в простой кубиче

Рис. 3.7. a — Сдвиг, создавший смешанную дислокацию. б — Смешанная дислокация в простой кубической решетке. Краевая плоскость скольжения совпадает с плоскостью чертежа; черные кружки — атомы под плоскостью скольжения, белые — атомы над ней; заштрихованный участок — ступенька, образовавшаяся в результате сдвига.

Рис. 3.8. Контур и вектор Бюргерса краевой дислокации.

ской решетке показывает, что и в этом случае b равен расстоянию между соседними атомами (это шаг винта в направлении линии дислокации), но направлен вдоль линии дислокации.

Вектор Бюргерса — наиболее инвариантная характеристика дислокации. Он остается постоянным вдоль всей линии любой дислокации и сохраняется при ее движении [27].

Теперь можно дать определение простых дислокаций через вектор Бюргерса. Краевой дислокацией называют дислокацию, вектор Бюргерса b которой перпендикулярен линии краевой дислокации. Винтовой дислокацией называют дислокацию, вектор Бюргерса b которой параллелен линии винтовой дислокации. В общем случае смешанной дислокации вектор Бюргерса может иметь иные направления относительно линии дислокации.

Дислокации окружены полями упругих напряжений. Область над линией краевой дислокации, содержащая лишнюю полуплоскость, испытывает напряжения сжатия, область под линией дислокации — напряжения растяжения. Вокруг винтовых дислокаций существует поле сдвиговых (касательных) напряжений. Величина напряжений убывает обратно пропорционально расстоянию от линии дислокации [27].

Источник: И. А. Случинская, Основы материаловедения и технологии полупроводников, Москва — 2002

Концепция дислокаций

- Материаловедение: вопросы и ответы

перейти к содержанию Меню
  • Дом
  • разветвленных MCQ
    • Программирование
    • CS - IT - IS
      • CS
      • IT
      • IS
    • ECE - EEE - EE
      • ECE
      • EEE
      • EE
    • Гражданский
    • Механический
    • Химическая промышленность
    • Металлургия
    • Горное дело
    • Приборы
    • Аэрокосмическая промышленность
    • Авиационная
    • Биотехнологии
    • Сельское хозяйство
    • Морской
    • MCA
    • BCA
  • Тест и звание
    • Тесты Sanfoundry
    • Сертификационные испытания
    • Тесты для стажировки
    • Занявшие первые позиции
  • Конкурсы
  • Стажировка
  • Обучение
.

5.1.1 Вывихи

© Х.Фёлль (Дефекты - сценарий)

плавка и ковка металлов отмечает начало цивилизации - арт г. обработка металлов была на протяжении тысячелетий основным «высокотехнологичным» промышленность наших предков.
Методом проб и ошибок за этот период время приводит к поразительной степени совершенства, что можно увидеть вокруг нас и во многих музеях. В государственном музее Schleswig-Holstein in Schleswig вы можете полюбоваться дамасский лезвия наших предков Viking .
Два вида железа или стали были сварены вместе и выкованный в меч чрезвычайно сложным способом; процесс занял несколько недель времени опытного кузнеца. Весь этот труд был необходим, если вы хотел меч с лучшими свойствами, чем у ингредиентов. В окутанные тайной дамасские технологии были необходимы, потому что викинги ничего не знали о дефектах кристаллов - в точности как римляне, греки, Японцы (Индия), индийцы, и все остальные в те времена.
Возможно, вам понравится находить и просматривать несколько модулей к этому темы, которые предоставлены «сбоку» в этом гиперкрипте.
Именно почему металлы могут быть пластически деформированы, и почему свойства пластической деформации могут быть в значительной степени изменились путем ковки (и магии?) без изменения химический состав оставался загадкой на протяжении тысячелетий.
Никаких объяснений не было предложено до 1934 , когда Taylor , Orowan и Поляны обнаружены (или придумано?) независимо от дислокации .
Несколькими годами ранее ( 1929 ), U. Dehlinger (который, примерно 1969 пытался научить меня основам механики) почти добрался до цели, постулировал он так называемый " Verhakungen " как дефекты решетки, которые должны были способствовать пластической деформации - и они были почти, но не совсем настоящими.
До сих пор жаль, что открытие основных научных принципов, регулирующих металлургию, до сих пор самая важная технология человечество, не заслужил Нобелевскую премию - но после войны все, что происходило в науке до или во время войны, было затмеваемый атомной бомбой и эйфорией сияющей красоты ядерной будущее. Ссылка платит дань уважения некоторым людям, которые сыграли важную роль в решении одного из древнейшие научные загадки человечества.
Вывихи легко распознаются в некоторых (в основном двумерные) структурные изображения в атомном масштабе. Они есть обычно вводятся и рассматриваются как дополнительные плоскости решетки, вставленные в кристалл, которые не проходят через весь кристалл, а заканчиваются линия дислокации.
Это показано на схематическом трехмерном виде кромки. дислокации в кубической примитивной решетке.Эта красивая картинка (из прочитанного?) очень четко показывает вставленную полуплоскость; он служит квинтэссенцией иллюстрация того, как выглядит дислокация edge .
Посмотрите на картинку и попытайтесь понять концепцию. Но не забывайте
1. Есть нет такой кристалл в природе: Все настоящие решетки сложнее - либо не кубический примитив, либо с более чем одним атомом в основании.
2. точное структура дислокации будет более сложной. Edge дислокации - это просто крайняя форма возможные дислокационные структуры, и в большинстве реальных кристаллов расщепляются на «частичные» вывихи и выглядят намного сложнее.
Поэтому мы должны ввести более общие и обязательно более абстрактное определение того, что представляет собой вывих.Перед мы делаем это, однако мы продолжим изучать некоторые свойства (edge) дислокации в упрощенном атомистическом представлении, поэтому мы можем оценить некоторые элементарные свойства.
Первый , мы рассмотрим упрощенный, но принципиально правильное отображение связи между вывих механизм и пластик деформация - простейший процесс металлообработки, содержащий все ингредиенты для полного решения всех загадок и магии кузнечное искусство.
Образование краевой дислокации
на сдвиг напряжение
Движение вывиха
через кристалл
Сдвиг верхней половины кристалла
после выхода вывиха
Эту последовательность можно увидеть анимированных по ссылке
Это требует небольшого упражнения
На рисунке показано простое, но далеко идущая правда:
пластик происходит деформация - атомный шаг за атомным шагом - путем образования и движения дислокаций

Все искусство ковки состоит просто из манипулируя плотностью дислокаций, и, что более важно, их способность перемещение через решетку.
После того, как дислокация прошла сквозь кристалл и вышли, решетка полностью восстанавливается, и в решетке не остается следов дислокации. Части кристалл теперь смещены в плоскости движения дислокации (слева картина). Это имеет интересную последовательность: Без дислокации, не может быть никаких упругих напряжений в одном кристалл! (без учета небольших и очень локализованных полей напряжений вокруг точечных дефектов).
Мы уже знаем достаточно, чтобы вывести некоторые элементарные свойства дислокаций , которые должны быть в целом действительными .
1. Вывих одномерный дефект потому что решетка только нарушена по линия дислокации (кроме мелких упругие деформации, которые мы не считаем дефектами дальше от ядро).Таким образом, линия дислокации в любой точке может быть описана линейный вектор т (x, y, z) .
2. В ядре дислокации связи между атомами , а не в равновесной конфигурации, т.е. при минимальном значении энтальпии; они сильно искажены. Вывих таким образом должно обладать энергии (на единицу длина) и энтропия .
3. Дислокации перемещаются под действием внешних сил, которые вызвать внутреннее напряжение в кристалле. Область, охватываемая движением, определяет самолет глиссады , который всегда ( определение) содержит вектор линии дислокации.
4. Движение дислокации перемещает весь кристалл с одной стороны скольжения плоскость относительно другой стороны.
5. (Краевые) дислокации могут (в принципе) генерируется агломерацией точек дефекты : собственное межузельное пространство на лишней полуплоскости или вакансии на недостающий полуплоскость.
Теперь добавляем новый свойство. Фундаментальной величиной, определяющей произвольную дислокацию, является ее Бургеры вектор б .это атомистическое определение следует из Burgers контур вокруг дислокации в реальном кристалле, который показано ниже
Изображение слева : Сделайте замкнутый контур, охватывающий дислокацию из решетка указывает на точка решетки (позже от атома к атому).Получаете замкнутую цепочку базы векторы, определяющие решетку.
Изображение справа : Сделать точно такую ​​же цепь базисных векторов в идеальной опорной решетке. Он не закроется .
Специальный вектор, необходимый для закрытия схема в эталонном кристалле по определение вектор Бюргерса б .
Отсюда следует, что вектор Бюргерса (идеальной) дислокации имеет вид необходимо вектор решетки . (Посмотрим позже есть исключения, отсюда и квалификатор "идеальный").
Но будьте осторожны! Как всегда с условностями, вы может выбрать знак вектора Бюргерса в будем.
В версии, приведенной здесь (это обычный определение), замкнутый контур - вокруг дислокации, вектор Бюргерса затем появляется в эталонном кристалле.
Конечно, можно использовать замкнутую цепь в эталонный кристалл и определить вектор Бюргерса вокруг дислокации. Вы также необходимо определить, будете ли вы двигаться по часовой стрелке или против часовой стрелки. круг. У вас всегда будет один и тот же вектор, но знак будет другим! А знак очень важен для расчетов! Так что что бы вы ни делали, оставайтесь стабильными! . На картинке выше мы пошли по часовой стрелке в обоих случаях.
Теперь мы продолжим и узнаем новое: Существует второй базовый тип . вывих, называемый винтовой дислокацией . Его атомистическое представление нарисовать несколько сложнее, но Бургерс схема еще возможна:
Вы заметили, что здесь мы выбрали по часовой стрелке - без особой уважительной причины
Если представить себе прогулку по незамкнутый контур Burges, который вы продолжаете постоянно, это становится очевидно, как винт вывих получил свое название.
К настоящему времени также должно быть ясно, как гамбургеры схемы сделаны.
Но теперь обратимся к более формальное описание дислокаций, которое будет включать всех возможных случаев , а не только крайних случаев чистые краевые или винтовые дислокации.
.

научных принципов

научных принципов

Структура металлов:

Металлы составляют около двух третей всех элементов и около 24% массы планеты. Они повсюду вокруг нас в таких формах, как стальные конструкции, медная проволока, алюминиевая фольга и золотые украшения. Металлы широко используются благодаря своим свойствам: прочности, пластичности, высокой температуре плавления, тепловой и электрической проводимости и ударной вязкости.

Эти свойства также дают ключ к разгадке структуры металлов.Как и все элементы, металлы состоят из атомов. Прочность металлов предполагает, что эти атомы удерживаются вместе прочными связями. Эти связи также должны позволять атомам двигаться; иначе как металл можно было забивать в листы или вытягивать в проволоку? Разумной моделью была бы модель, в которой атомы удерживаются вместе прочными, но делокализованными связями.

Склеивание

Такие связи могут образовываться между атомами металлов, которые имеют низкую электроотрицательность и не сильно притягивают свои валентные электроны.Это позволило бы наиболее удаленным электронам быть общими для всех окружающих атомов, в результате чего положительные ионы ( катионов, ) были окружены морем электронов (иногда называемым электронным облаком).

Рисунок 1: Металлическое соединение .

Поскольку эти валентные электроны являются общими для всех атомов, они не считаются связанными с каким-либо одним атомом. Это сильно отличается от ионных или ковалентных связей, где электроны удерживаются одним или двумя атомами.Таким образом, металлическая связь получается прочной и однородной. Поскольку электроны притягиваются ко многим атомам, они обладают значительной подвижностью, что обеспечивает хорошую теплопроводность и электропроводность металлов.

Выше точки плавления металлы являются жидкостями, их атомы расположены беспорядочно и относительно свободно перемещаются. Однако при охлаждении ниже температуры плавления металлы перестраиваются, образуя упорядоченные кристаллические структуры.

Рисунок 2: Расположение атомов в жидкости и твердом теле.

Кристаллы

Чтобы сформировать самые прочные металлические связи, металлы упаковываются как можно плотнее. Возможны несколько вариантов упаковки. Вместо атомов представьте шарики, которые нужно упаковать в коробку. Шарики помещали на дно коробки аккуратными упорядоченными рядами, а затем начинали второй слой. Второй слой шариков не может быть помещен непосредственно поверх других шариков, поэтому ряды шариков этого слоя перемещаются в промежутки между шариками первого слоя.Первый слой мрамора может быть обозначен как A, а второй слой как B, давая двум слоям обозначение AB.

Слой «A» Слой «B» AB упаковка
Рисунок 3: AB упаковка сфер. Обратите внимание, что сферы слоя B помещаются в отверстия в слое A.

Укладка мрамора в третий слой требует решения. Снова ряды атомов будут гнездиться в полостях между атомами во втором слое, но существуют две возможности.Если ряды мрамора уложены так, что они находятся непосредственно над первым слоем (A), то расположение можно описать как ABA. Такое устройство насадки с чередующимися слоями будет обозначено как ABABAB. Такое расположение ABAB называется гексагональной плотной упаковкой (HCP).

Если ряды атомов упакованы в этом третьем слое так, чтобы они не лежали над атомами в слое A или B, то третий слой называется C. Эта последовательность упаковки будет обозначена ABCABC и также известна как гранецентрированный кубик (ГЦК).Оба устройства обеспечивают максимально плотную упаковку сфер, оставляя пустой лишь около четверти доступного пространства.

Наименьший повторяющийся массив атомов в кристалле называется элементарной ячейкой. Третье распространенное устройство упаковки в металлах, элементарная ячейка с объемно-центрированным кубом (ОЦК), имеет атомы в каждом из восьми углов куба плюс один атом в центре куба. Поскольку каждый из угловых атомов является углом другого куба, угловые атомы в каждой элементарной ячейке будут разделены между восемью элементарными ячейками.Элементарная ячейка ОЦК состоит всего из двух атомов, одного в центре и восьми восьмых от углов.

В схеме FCC также есть восемь атомов в углах элементарной ячейки и по одному центру на каждой из граней. Атом в грани делится с соседней ячейкой. Элементарные ячейки FCC состоят из четырех атомов, восемь восьмых по углам и шесть половин на гранях. В таблице 1 показаны стабильные кристаллические структуры при комнатной температуре для нескольких элементарных металлов.

Таблица 1: Кристаллическая структура некоторых металлов (при комнатной температуре) 900 40
Алюминий FCC
 
Никель FCC
Кадмий HCP
 
Ниобий BCC
Хром BCC
 Platinum 
FCC
Кобальт HCP
 
Серебро FCC
Медь FCC
 
Титан HCP
 Золото 
FCC Ванадий BCC
Железо BCC
 
Цинк HCP
Свинец FCC
 
Цирконий HCP
Магний HCP

Структуры элементарных ячеек определяют некоторые свойства металлов.Например, структуры FCC с большей вероятностью будут пластичными, чем BCC (объемно-центрированная кубическая) или HCP (гексагональная плотноупакованная). На рисунке 4 показаны элементарные ячейки FCC и BCC. (См. Активность кристаллической структуры)

Телоцентрированный кубический Лицоцентрированный кубический
Рисунок 4: элементарных ячеек для BCC и FCC.

Когда атомы расплавленного металла начинают собираться вместе, образуя кристаллическую решетку в точке замерзания, группы этих атомов образуют крошечные кристаллы.Эти крошечные кристаллы увеличиваются в размере за счет постепенного добавления атомов. Получающееся в результате твердое вещество представляет собой не один кристалл, а на самом деле множество более мелких кристаллов, называемых зернами. Эти зерна растут до тех пор, пока не столкнутся с соседними растущими кристаллами. Образовавшаяся между ними граница раздела называется границей зерен. Иногда зерна бывают достаточно крупными, чтобы их можно было увидеть под обычным световым микроскопом или даже невооруженным глазом. Блестки, которые видны на недавно оцинкованном металле, представляют собой зерна. (См. Модель активности металлов с помощью частиц). На рисунке 5 показан типичный вид металлической поверхности с множеством зерен или кристаллов.

Рисунок 5: зерен и границ зерен для металла.

Дефекты кристалла:

Металлические кристаллы не идеальны. Иногда встречаются пустые места, называемые вакансиями, где отсутствует атом. Другим распространенным дефектом металлов являются дислокации, которые представляют собой линии дефектного соединения. На рисунке 6 показан один тип дислокации.

Рисунок 6: Поперечное сечение краевого дислокации, которое распространяется на страницу. Обратите внимание, как плоскость в центре заканчивается внутри кристалла.

Эти и другие дефекты, а также наличие зерен и границ зерен определяют многие механические свойства металлов. Когда к металлу прикладывается напряжение, возникают дислокации, которые перемещаются, позволяя металлу деформироваться.

Механические свойства:

Когда к металлам прикладываются небольшие нагрузки (напряжения), они деформируются и возвращаются к своей исходной форме при снятии нагрузки. Сгибание стального листа является примером, когда скрепления изгибаются или растягиваются только на небольшой процент.Это называется упругой деформацией и включает временное растяжение или искривление связей между атомами.

Рисунок 7: Упругая деформация металлического стержня.

При приложении более высоких напряжений возникает остаточная (пластическая) деформация. Например, если скрепку сильно согнуть, а затем отпустить, она останется частично согнутой. Эта пластическая деформация включает разрыв связей, часто в результате движения дислокаций. См. Рис. 8. Дислокации легко перемещаются в металлах из-за делокализованной связи, но не перемещаются легко в керамике.Это во многом объясняет, почему металлы пластичны, а керамика - хрупка.

Рисунок 8: Движение дислокации в кристалле.

Если поместить под слишком большое напряжение, металл механически разрушится или сломается. Со временем это также может быть результатом множества небольших нагрузок. Самая частая причина (около 80%) выхода металла из строя - усталость. Благодаря приложению и снятию небольших напряжений (до миллионов раз) по мере использования металла в нем образуются и медленно растут небольшие трещины.Со временем металл деформируется или ломается (ломается). (См. Деятельность по обработке металлов)

Обработка:

В промышленности расплавленный металл охлаждают до твердого состояния. Затем твердому металлу механически формируют конкретный продукт. Очень важно, как выполняются эти этапы, поскольку нагрев и пластическая деформация могут сильно повлиять на механические свойства металла.

Влияние размера зерна:

Давно известно, что свойства некоторых металлов можно изменять путем термической обработки.Зерна в металлах имеют тенденцию увеличиваться в размерах при нагревании металла. Зерно может увеличиваться в размерах за счет миграции атомов из другого зерна, которые в конечном итоге могут исчезнуть. Дислокации не могут легко пересекать границы зерен, поэтому размер зерен определяет, насколько легко дислокации могут перемещаться. Как и ожидалось, металлы с мелкими зернами прочнее, но менее пластичны. На рис. 5 показан пример зеренной структуры металлов.

Закалка и закалка:

Есть много способов термической обработки металлов.Отжиг - это процесс размягчения, при котором металлы нагревают, а затем дают медленно остыть. Большинство сталей можно закалить путем нагрева и закалки (быстрого охлаждения). Этот процесс использовался довольно рано в истории обработки стали. Фактически, считалось, что биологические жидкости лучше всего гасят жидкости, и иногда использовалась моча. В некоторых древних цивилизациях раскаленные лезвия меча иногда вонзались в тела несчастных заключенных! Сегодня металлы закаливают в воде или масле.На самом деле закалка в растворах соленой воды происходит быстрее, поэтому древние не совсем ошибались.

При закалке металл становится очень твердым, но при этом хрупким. Осторожно нагревая закаленный металл и давая ему медленно остыть, вы получите металл, который останется твердым, но менее хрупким. Этот процесс известен как отпуск. (См. «Обработка металлов»). Это приводит к появлению большого количества мелких выделений Fe 3 C в стали, которые блокируют движение дислокаций, тем самым обеспечивая упрочнение.

Холодная обработка:

Поскольку пластическая деформация возникает в результате движения дислокаций, металлы можно упрочнять, предотвращая это движение. Когда металл изгибается или приобретает форму, возникают и перемещаются дислокации. По мере увеличения количества дислокаций в кристалле они будут запутываться или скрепляться и не смогут двигаться. Это укрепит металл и усложнит его деформацию. Этот процесс известен как холодная обработка. При более высоких температурах дислокации могут перестраиваться, поэтому упрочнение происходит незначительно.

Можно попробовать со скрепкой. Разогните скрепку и несколько раз согните одну из прямых частей вперед-назад. Представьте себе, что происходит на атомарном уровне. Обратите внимание, что металл сложнее согнуть в одном и том же месте. Вывихи образовались и запутались, увеличивая прочность. Скрепка со временем сломается на изгибе. Очевидно, что холодная обработка работает только до определенной степени! Слишком большая деформация приводит к запутыванию дислокаций, которые не могут двигаться, поэтому металл вместо этого ломается.

Нагревание устраняет последствия холодной обработки. При нагревании холоднодеформированных металлов происходит перекристаллизация. Новые зерна образуются и растут, чтобы потреблять холодно обработанную часть. В новых зернах меньше дислокаций, и восстанавливаются первоначальные свойства.

Сплавы:

Наличие в металле других элементов также может изменить его свойства, иногда резко. Расположение и вид связи в металлах позволяет добавлять в структуру другие элементы, образуя смеси металлов, называемые сплавами.Даже если добавленные элементы являются неметаллами, сплавы могут иметь металлические свойства.

Медные сплавы начали производить в самом начале нашей истории. Бронза, сплав меди и олова, была первым известным сплавом. Его было легко получить, просто добавив олово к расплавленной меди. Орудия и оружие из этого сплава были прочнее, чем из чистой меди. Добавление цинка к меди дает еще один сплав - латунь. Хотя латунь труднее производить, чем бронзу, она была известна и в древние времена.(См. «Золотая» Пенни Активность) Типичный состав некоторых сплавов приведен в Таблице 2.

Таблица 2: Состав нескольких сплавов.
Сплав Состав
Латунь Медь, цинк
Бронза Медь, цинк, олово
Олово олово, медь
Припой Свинец, олово
Alnico Алюминий, никель, кобальт, железо
Чугун Железо, углерод, марганец, кремний
Сталь Железо, углерод (плюс небольшое количество легирующих элементов)
Нержавеющая сталь Железо, хром, никель

Сплавы представляют собой смеси, и их процентный состав может варьироваться.Это полезно, потому что свойствами сплавов можно управлять, варьируя состав. Например, электрикам нужен припой с другими свойствами, чем у сантехников. Электрический припой очень быстро затвердевает, образуя почти мгновенное соединение. Это будет непрактично для сантехников, которым нужно время, чтобы установить соединение. Электрический припой содержит около 60% олова, тогда как припой для сантехников - около 30%.

Изначально олово содержало свинец, а поскольку олово использовалось для изготовления тарелок и кубков, вероятно, оно было источником отравления свинцом.Изготовленный сегодня олово не содержит свинца. Расширение знаний о свойствах металлов также приводит к созданию новых сплавов. Некоторые латуни образуют сплавы с памятью формы, которые можно сгибать и возвращать к своей исходной форме при осторожном нагревании. Цинковые сплавы, используемые в качестве покрытия на стали, замедляют коррозию (оцинкованная сталь). Сплавы кадмия находят широкое применение в солнечных элементах. Способность мельхиора противостоять образованию отложений делает его полезным в садках в рыбоводстве.

Чугун и сталь:

Углеродистые стали различаются по процентному содержанию углерода.Количество углерода влияет на свойства стали и ее пригодность для конкретного использования. Стали редко содержат более 1% углерода. Конструкционная сталь содержит около 0,1-0,2% углерода по весу; это делает его немного более пластичным и менее склонным к разрушению во время землетрясений. Сталь, используемая для изготовления инструментов, содержит около 0,5-1% углерода, что делает ее более твердой и износостойкой. Чугун содержит от 2,5 до 4% углерода и находит применение в недорогих приложениях, где его хрупкость не является проблемой. Удивительно, но чистое железо чрезвычайно мягкое и используется редко.Увеличение количества углерода приводит к увеличению твердости металла, как показано на следующем графике. В медленно охлаждаемых сталях углерод увеличивает количество твердого Fe 3 C; в закаленных сталях он также увеличивает твердость и прочность материала.

Рисунок 9: Зависимость твердости стали от% углерода. Рисунок 10: BCC железа, показывающее расположение межузельных атомов углерода.

Заколки для бобби и скрепки обрабатываются практически одинаково, но содержат разное количество углерода.Заколки и скрепки изготовлены из холоднокатанной стальной проволоки. Скрепка, содержащая мало углерода, в основном состоит из чистого Fe с некоторым количеством частиц Fe 3 C. Булавка для шкворня имеет больше углерода и, следовательно, содержит большее количество Fe 3 C, что делает ее намного более твердой и прочной.

Свойства стали можно адаптировать для специальных целей путем добавления в сплав других металлов. Титан, ванадий, молибден и марганец входят в число металлов, добавляемых к этим специальным сталям.Нержавеющая сталь содержит минимум 12% хрома, который останавливает дальнейшее окисление, образуя защитный оксид на поверхности.

Коррозия:

Коррозия металлов может быть серьезной проблемой, особенно при длительном применении в конструкциях, таких как автомобили, мосты и корабли. В большинстве случаев коррозия носит электрохимический (гальванический) характер. Для возникновения коррозии должны присутствовать анод (более легко окисляемая область) и катод (менее легко окисляемая область). Это могут быть разные типы металлов или просто разные участки одного и того же металла.Также должен присутствовать какой-то электролит, который может обеспечивать перенос электронов. Коррозия включает высвобождение электронов на аноде из-за высокого окислительного потенциала атомов на аноде. Когда электроны высвобождаются, образуются катионы металлов, и металл распадается. Одновременно катод, который имеет больший восстановительный потенциал, принимает электроны, либо образуя отрицательные ионы, либо нейтрализуя положительные ионы.

В случае ряда активности или электродвижущей силы металл, такой как цинк, вступает в реакцию с водородом и служит как анодом, так и катодом.(См. Activity Series Activity) Уравнение этой реакции:

2 Zn + 2 H + -> 2 Zn 2+ + H 2

Пузырьки водорода на катоде при разрушении анода. Неровности поверхности, наличие примесей, ориентация зерен, локализованные напряжения и вариации окружающей среды - вот некоторые из факторов, определяющих, почему один кусок металла может служить обоими электродами. Например, головка и острие гвоздя обработаны методом холодной обработки и могут служить анодом, а корпус - катодом.(См. Коррозия от активности железа)

Хотя окисление на аноде и восстановление на катоде являются одновременными процессами, коррозия обычно происходит на аноде. Катод почти никогда не разрушается. В 1824 году Дэви разработал метод защиты корпусов кораблей от коррозии с помощью цинка, который можно периодически заменять. Цинк более активен, чем сталь в корпусе, и будет служить анодом и подвергаться коррозии; им приносят в жертву защиту стальной конструкции. Сталь, которая была бы и анодом, и катодом, обычно служит катодом.Это называется катодной защитой. Трубопроводы также защищены более активным металлическим магнием. Иногда электрические токи поддерживаются в коротких отрезках трубопроводов с такой же металлической проволокой, которая используется в качестве жертвенного анода.

Коррозия - серьезная проблема, которую необходимо решить для эффективного использования металлов. Железо соединяется с кислородом воздуха, образуя оксид железа (ржавчину), что в конечном итоге разрушает полезность металла. (См. Дополнительно: действие химического обогрева рук). К счастью, некоторые металлы, такие как алюминий и хром, образуют защитное оксидное покрытие, предотвращающее дальнейшее окисление (коррозию).Точно так же медь соединяется с серой и кислородом, образуя знакомую зеленую патину.

Понимание химического состава металлов приводит к разработке методов уменьшения и предотвращения коррозии. Атомы хрома примерно того же размера, что и атомы железа, и могут замещать их в кристаллах железа. Хром образует оксидный слой, который позволяет нержавеющей стали противостоять коррозии. Металлы можно окрашивать или покрывать другими металлами; оцинкованная (оцинкованная) сталь является примером. Когда эти два металла используются вместе, более активный цинк корродирует, жертвуя собой ради сохранения стали.

Металлические руды:

Золото, серебро и медь были первыми металлами, которые использовались, поскольку они находятся в свободном или элементарном состоянии. Большинство металлов, встречающихся в природе, сочетаются с другими элементами, такими как кислород и сера. Энергия необходима для извлечения металлов из этих соединений или руд. Исторически сложилось так, что легкость, с которой данный металл может быть извлечена из руды, наряду с доступностью, определялась при его использовании, отсюда и раннее использование меди, олова и железа.Формулы для некоторых руд приведены ниже:

Habgar
Гематит Fe 2 O 3 Рутил TiO 2
Магнетит Fe 3 O 4 Циркон ZrSiO ZrSiO Пирит FeS 2 Касситерит SnO 2
Халькоцит Cu 2 S Боксит Al 2 O inn 3
Галена PbS

Эти руды представляют собой ионные соединения, в которых металлы существуют в виде положительных ионов.Например, степень окисления железа в гематите +3; степень окисления меди в халькоците +1. Извлечение металлов из их руд представляет собой окислительно-восстановительную (окислительно-восстановительную) реакцию. В элементарном состоянии металлы состоят из атомов, а не ионов. Поскольку у атомов нет общего заряда, ионы металлов в реакции приобретают электроны; они уменьшены.

Общая реакция восстановления меди из халькоцита:

Cu 2 S + O 2 + Энергия -> 2 Cu + SO 2

Это только общая реакция.Весь процесс не так прост. Восстановление металлов из их руд обычно требует ряда химических и механических процессов. Обычно они энергетически дороги, потребляют большое количество тепла и / или электроэнергии. Например, около пяти процентов электроэнергии, потребляемой в Соединенных Штатах, используется для производства алюминия. Изготовление алюминиевой консервной банки, начиная с руды, стоит примерно в сто раз дороже, чем плавление и образование переработанного алюминия. Извлечение металлов из руд может также приводить к образованию загрязняющих веществ, таких как диоксид серы, указанный выше.По возможности, переработка и переработка металлов имеет смысл.

Относительная сложность извлечения металлов из руд указывает на то, что это их предпочтительное состояние. После удаления из руд и в элементарном состоянии большинство металлов проявляют значительную тенденцию реагировать с кислородом и серой и возвращаться в свое естественное состояние; они разъедают! При коррозии металл окисляется. Он теряет электроны, становясь положительным ионом. (См. Раздел "Коррозия металлов")

Сводка по металлам

Металлы обладают полезными свойствами, включая прочность, пластичность, высокие температуры плавления, термическую и электрическую проводимость и ударную вязкость.Они широко используются в конструкциях и электротехнике. Понимание структуры металлов может помочь нам понять их свойства.

Атомы металлов связаны друг с другом прочными делокализованными связями. Эти связи образуются облаком валентных электронов, которые разделяются между положительными ионами (катионами) металлов в кристаллической решетке. В таком расположении валентные электроны обладают значительной подвижностью и могут легко проводить тепло и электричество. В кристаллической решетке атомы металлов плотно упакованы вместе, чтобы максимизировать прочность связей.Настоящий кусок металла состоит из множества крошечных кристаллов, называемых зернами, которые касаются границ зерен.

Из-за делокализованной природы связей атомы металла могут скользить мимо друг друга, когда металл деформируется, вместо того, чтобы разрушаться, как хрупкий материал. Это движение атомов осуществляется за счет образования и движения дислокаций в решетке. Технологии обработки, которые изменяют связь между атомами или влияют на количество или подвижность дислокаций, могут иметь большое влияние на механические свойства металла.

Упругая деформация металла - это небольшое изменение формы при низком напряжении, которое можно восстановить после снятия напряжения. Этот тип деформации включает растяжение металлических связей, но атомы не скользят друг мимо друга. Пластическая деформация возникает, когда напряжение достаточно для постоянной деформации металла. Этот тип деформации включает разрыв связей, обычно за счет движения дислокаций.

Пластическая деформация приводит к образованию большего количества дислокаций в металлической решетке.Это может привести к снижению подвижности этих дислокаций из-за их тенденции запутываться или скрепляться. Пластическая деформация при температурах, достаточно низких, чтобы атомы не могли перегруппироваться (холодная обработка), может упрочнять металл в результате этого эффекта. Одним из побочных эффектов является то, что металл становится более хрупким. При использовании металла трещины имеют тенденцию образовываться и расти, что в конечном итоге приводит к его разрушению или разрушению.

Дислокации не могут легко пересекать границы зерен. Если металл нагреть, зерна могут стать больше, а материал станет мягче.Нагревание металла и быстрое охлаждение (закалка) с последующим легким нагревом (отпуском) приводит к более твердому материалу из-за образования множества мелких выделений Fe 3 C, которые блокируют дислокации.

Смешивание металлов с другими металлами или неметаллами может привести к получению сплавов с желаемыми свойствами. Сталь, изготовленная из железа и углерода, может существенно различаться по твердости в зависимости от количества добавленного углерода и способа ее обработки. Некоторые сплавы обладают более высокой устойчивостью к коррозии.

Коррозия - основная проблема большинства металлов. Это окислительно-восстановительная реакция, в которой атомы металла образуют ионы, вызывающие ослабление металла. Один из методов, который был разработан для борьбы с коррозией в конструкциях, включает прикрепление расходуемого анода, сделанного из металла с более высоким окислительным потенциалом. В этом случае анод подвергается коррозии, оставляя катод, конструктивную часть, неповрежденным. Образование защитного покрытия на внешней стороне металла также может противостоять коррозии.Стали, содержащие металлический хром, образуют защитное покрытие из оксида хрома. Алюминий также устойчив к коррозии благодаря образованию прочного оксидного покрытия. Медь образует знакомую зеленую патину, реагируя с серой и кислородом в воздухе.

В природе можно найти лишь несколько чистых металлов. Большинство металлов существует в виде руд, соединений металла с кислородом или серой. Для отделения чистого металла от руды часто требуется большое количество энергии в виде тепла и / или электричества. Из-за такого большого расхода энергии имеет смысл по возможности утилизировать металлы.

Вопросы для обсуждения

1. Как руды добываются из земли?

2. Назовите 4 сплава и металлы, из которых они сделаны.

3. Какое влияние оказывает «холодная обработка» на металлы?

4. Какой процесс делает металлы твердыми, но хрупкими?

5. Какой процесс делает металлы мягче и удобнее в обработке?

6. Назовите три метода уменьшения коррозии.

7. Дайте 2 ценных результата переработки.

Проблема

Предположим, что радиус одного атома железа равен 1,24 Ангстрема (1 Ангстрем = 1 x 10 -8 см). Какой будет плотность объемно центрированного кубического (ОЦК) железа в граммах на кубический сантиметр? Подсказка: найдите массу и объем одной элементарной ячейки. Не забудьте считать только долю каждого атома в ячейке.

Добавочный номер:

Максимальная растворимость углерода в железе ОЦК составляет один атом на каждые 5000 атомов железа.Какой будет плотность стали при максимальном растворении углерода?


Решение

= m / V = ​​# атомов x (масса / атом) / объем ячейки

В ОЦК-железе на элементарную ячейку приходится два атома железа. (8 х 1/8 + 1)

Один атом железа имеет массу 55,85 а.е.м. или 9,27 x 10 -23 граммов.

Общая масса одной элементарной ячейки составляет 1,85 x 10 -22 граммов.

Пусть (r) будет радиус атома железа.Атомы в углах контактируют с атомом в середине, в результате чего диагональ коробки равна (4r).

Если мы назовем одну сторону коробки (L), диагональ грани куба будет равна (квадратный корень из 2) умноженным на (L).

Одна сторона, диагональ грани куба и диагональ прямоугольника образуют прямоугольный треугольник. Используя теорему Пифагора, (L) 2 + (квадратный корень 2 x (L)) 2 = (4r) 2 .

Решая для L и подставляя для (r), мы находим, что L = 2.86 ангстрем или 2,86 x 10 -8 см.

Объем куба (элементарной ячейки) равен (л) 3 = 2,34 x 10 -23 см 3 . Разделив массу на объем, получим:

Плотность = 7,91 г / см 3 .

Следующая тема: Список литературы
Металлы Содержание МАСТ Домашняя страница
.

Simple English Wikipedia, бесплатная энциклопедия

Некоторые химические элементы называются металлами . Это большинство элементов периодической таблицы. Эти элементы обычно обладают следующими свойствами:

  1. Они могут проводить электричество и тепло.
  2. Их легко сформировать.
  3. У них блестящий вид.
  4. Они имеют высокую температуру плавления.

Большинство металлов являются твердыми при комнатной температуре, но это не обязательно.Ртуть жидкая. Сплавы - это смеси, в которых хотя бы одна часть смеси представляет собой металл. Примеры металлов: алюминий, медь, железо, олово, золото, свинец, серебро, титан, уран и цинк. Хорошо известные сплавы включают бронзу и сталь.

Изучение металлов называется металлургией.

Признаки сходства металлов (свойства металлов) [изменить | изменить источник]

Большинство металлов твердые, блестящие, они кажутся тяжелыми и плавятся только при очень высоких температурах.Куски металла будут издавать звон колокольчика при ударе чего-то тяжелого (они звучные). Тепло и электричество могут легко проходить через металл (он проводящий). Кусок металла можно разбить на тонкий лист (он ковкий) или растянуть на тонкую проволоку (он пластичный). Металл трудно разорвать (у него высокая прочность на разрыв) или разбить (у него высокая прочность на сжатие). Если надавить на длинный тонкий кусок металла, он согнется, а не сломается (он эластичный). За исключением цезия, меди и золота, металлы имеют нейтральный серебристый цвет.

Не все металлы обладают этими свойствами. Ртуть, например, жидкая при комнатной температуре, свинец очень мягкий, а тепло и электричество не проходят через железо так, как через медь.

Мост в России металлический, вероятно, железный или стальной.

Металлы очень полезны людям. Их используют для изготовления инструментов, потому что они могут быть прочными и легко поддающимися обработке. Из железа и стали строили мосты, здания или корабли.

Некоторые металлы используются для изготовления таких предметов, как монеты, потому что они твердые и не изнашиваются быстро.Например, медь (блестящая и красного цвета), алюминий (блестящая и белая), золото (желтая и блестящая), а также серебро и никель (также белые и блестящие).

Некоторые металлы, например сталь, можно сделать острыми и оставаться острыми, поэтому их можно использовать для изготовления ножей, топоров или бритв.

Редкие металлы высокой стоимости, такие как золото, серебро и платина, часто используются для изготовления ювелирных изделий. Металлы также используются для изготовления крепежа и шурупов. Кастрюли, используемые для приготовления пищи, могут быть сделаны из меди, алюминия, стали или железа.Свинец очень тяжелый и плотный, и его можно использовать в качестве балласта на лодках, чтобы не допустить их опрокидывания или защитить людей от ионизирующего излучения.

Многие изделия, сделанные из металлов, на самом деле могут быть сделаны из смесей по крайней мере одного металла с другими металлами или с неметаллами. Эти смеси называются сплавами. Некоторые распространенные сплавы:

Люди впервые начали делать вещи из металла более 9000 лет назад, когда они обнаружили, как получать медь из [] руды. Затем они научились делать более твердый сплав - бронзу, добавляя к ней олово.Около 3000 лет назад они открыли железо. Добавляя небольшое количество углерода в железо, они обнаружили, что из них можно получить особенно полезный сплав - сталь.

В химии металл - это слово, обозначающее группу химических элементов, обладающих определенными свойствами. Атомы металла легко теряют электрон и становятся положительными ионами или катионами. Таким образом, металлы не похожи на два других вида элементов - неметаллы и металлоиды. Большинство элементов периодической таблицы - металлы.

В периодической таблице мы можем провести зигзагообразную линию от элемента бора (символ B) до элемента полония (символ Po). Элементы, через которые проходит эта линия, - это металлоиды. Элементы, расположенные выше и справа от этой линии, являются неметаллами. Остальные элементы - это металлы.

Большинство свойств металлов обусловлено тем, что атомы в металле не очень крепко удерживают свои электроны. Каждый атом отделен от других тонким слоем валентных электронов.

Однако некоторые металлы отличаются. Примером может служить металлический натрий. Он мягкий, плавится при низкой температуре и настолько легкий, что плавает на воде. Однако людям не следует пробовать это, потому что еще одно свойство натрия состоит в том, что он взрывается при соприкосновении с водой.

Большинство металлов химически стабильны и не вступают в реакцию легко, но некоторые реагируют. Реактивными являются щелочные металлы, такие как натрий (символ Na) и щелочноземельные металлы, такие как кальций (символ Ca). Когда металлы действительно вступают в реакцию, они часто реагируют с кислородом.Оксиды металлов являются основными. Оксиды неметаллов кислые.

Соединения, в которых атомы металлов соединены с другими атомами, образуя молекулы, вероятно, являются наиболее распространенными веществами на Земле. Например, поваренная соль - это соединение натрия.

Кусок чистой меди, найденной как самородная медь

Считается, что использование металлов отличает людей от животных. До того, как стали использовать металлы, люди делали инструменты из камня, дерева и костей животных. Сейчас это называется каменным веком.

Никто не знает, когда был найден и использован первый металл. Вероятно, это была так называемая самородная медь, которую иногда находят большими кусками на земле. Люди научились делать из него медные инструменты и другие вещи, хотя для металла он довольно мягкий. Они научились плавке, чтобы получать медь из обычных руд. Когда медь плавили на огне, люди научились делать сплав под названием бронза, который намного тверже и прочнее меди. Из бронзы делали ножи и оружие.Это время в истории человечества примерно после 3300 г. до н.э. часто называют бронзовым веком, то есть временем бронзовых орудий и оружия.

Примерно в 1200 году до нашей эры некоторые люди научились делать железные орудия труда и оружие. Они были даже тверже и прочнее бронзы, и это было преимуществом на войне. Время железных инструментов и оружия теперь называется железным веком. . Металлы были очень важны в истории человечества и цивилизации. Железо и сталь сыграли важную роль в создании машин. Золото и серебро использовались как деньги, чтобы люди могли торговать, то есть обмениваться товарами и услугами на большие расстояния.

В астрономии металл - это любой элемент, кроме водорода или гелия. Это потому, что эти два элемента (а иногда и литий) - единственные, которые образуются вне звезд. В небе спектрометр может видеть признаки металлов и показывать астроному металлы в звезде.

В организме человека некоторые металлы являются важными питательными веществами, такими как железо, кобальт и цинк. Некоторые металлы могут быть безвредными, например рутений, серебро и индий. Некоторые металлы могут быть токсичными в больших количествах. Другие металлы, такие как кадмий, ртуть и свинец, очень ядовиты.Источники отравления металлами включают горнодобывающую промышленность, хвостохранилища, промышленные отходы, сельскохозяйственные стоки, профессиональные воздействия, краски и обработанную древесину.

.

Смотрите также