Что обеспечивает металлам высокую электропроводность


Высокая электропроводность - металл - Большая Энциклопедия Нефти и Газа, статья, страница 3

Высокая электропроводность - металл

Cтраница 3

К металлам относятся вещества, обладающие хорошей электрической проводимостью с удельным сопротивлением р 10 - 7 - - 10 - 8 ом-м, высокой теплопроводностью, вязкостью, ковкостью. Высокая электропроводность металлов объясняется тем, что валентные электроны принадлежат не отдельным атомам, а всей кристаллической решетке в целом. Эти электроны называют свободными.  [31]

Приведенные положения позволяют объяснить характерные свойства металлов. Высокая электропроводность металлов объясняется присутствием в них свободных электронов, которые под влиянием даже небольшой разности потенциалов перемещаются от отрицательного полюса к положительному. С повышением температуры усиливаются колебания ионов ( атомов), что затрудняет прямолинейное движение электронов, в результате чего электросопротивление возрастает. При низких температурах колебательное движение ионов ( атомов) сильно уменьшается и электропроводность резко возрастает. Около абсолютного нуля сопротивление многих металлов практически отсутствует. Высокая теплопроводность металлов обусловливается как большой подвижностью свободных электронов, так и колебательным движением ионов ( атомов), вследствие чего происходит быстрое выравнивание температуры в массе металла.  [32]

Приведенные положения позволяют объяснить характерные свойства металлов. Высокая электропроводность металлов объясняется присутствием в них свободных электронов, которые перемещаются в потенциальном поле решетки. С повышением темпера гуры усиливаются колебания ионов ( атомов), образуются вакансии и нарушается правильная периодичность потенциального поля, что затрудняет движение электронов, в результате чего электросопротивление возрастает. При низких температурах колебательное движение ионов ( атомов) сильно уменьшается и электропроводность возрастает. У некоторых металлов в результате образования пар электронов, движущихся упорядоченно при очень низких температурах ( 20К), электропроводность обращается в бесконечное и, - явление сверхпроводимости. Высокая теплопроводность металлов обусловливается большой подвижностью свободных электронов и в меньшей степени колебательным движением ионов.  [33]

В отличие от ионных и ковалентных соединений металлы отличаются высокой электропроводностью и теплопроводностью. Высокая электропроводность металлов указывает на то, что электроны свободно могут передвигаться во всем его объеме. Иными словами металл можно рассматривать как кристалл, в узлах решетки которого расположены ионы, связанные электронами, находящимися в общем пользовании, т.е. в металлах имеет место сильно нелокализованная химическая связь. Совокупность электронов, обеспечивающих эту связь, называют электронным газом.  [34]

Все металлы обладают высокой электропроводностью. Причина высокой электропроводности металлов заключается в слабой связи электронного газа с положительно заряженными ионами. Достаточно приложить небольшую разность электрических потенциалов к концам металлического тела, чтобы вызвать перемещение электронного газа - электрический ток.  [36]

Положительно заряженные атомы валентная связи), окружены как бы электронным газом, который может свободно передвигаться. Этим объясняется высокая электропроводность металлов.  [37]

Свободные электроны перемещаются по объему металла, как бы не замечая ионов, находящихся в узлах кристаллической решетки. Этим и объясняется высокая электропроводность металлов.  [38]

За счет обобществления электронов атомы становятся положительно заряженными ионами, которые обтекаются электронным газом, что и обусловливает связи

Электропроводность элементов и других материалов

  • Проводники - это материалы со слабо прикрепленными валентными электронами - электроны могут свободно дрейфовать между атомами
  • Изоляторы имеют структуры, в которых электроны связаны с атомами ионными или ковалентными связями - ток практически отсутствует. flow
  • Полупроводники - это изолирующие материалы, в которых связи могут быть разорваны под действием приложенного напряжения - электроны могут высвобождаться и перемещаться с одного освобожденного валентного узла на другой.

Электропроводность

Электропроводность или удельная проводимость - это мера способности материала проводить электрический ток. Электропроводность является обратной (обратной) величиной удельного электрического сопротивления.

Электропроводность определяется как отношение плотности тока к напряженности электрического поля и может быть выражена как

σ = J / E (1)

, где

σ = электрическая проводимость (1 / Ом · м, 1/ Ом м, сименс / м, См / м, mho / m)

Дж = плотность тока (ампер / м 2 )

E = электрический напряженность поля (вольт / м)

One siemens - S - эквивалентна одному ому и также обозначается как one mho.

Электропроводность некоторых распространенных материалов

Материал Электропроводность
- σ -
(1 / Ом · м, См / м, МО / м)
Алюминий 37,7 10 6
Бериллий 31,3 10 6
Кадмий 13,8 10 6
Кальций 29.8 10 6
Хром 7,74 10 6
Кобальт 17,2 10 6
Медь 59,6 10 6
Медь - отожженная 58,0 10 6
Галлий 6,78 10 6
Золото 45,2 10 6
Иридий 19.7 10 6
Железо 9,93 10 6
Индий 11,6 10 6
Литий 10,8 10 6
Магний 22,6 10 6
Молибден 18,7 10 6
Никель 14,3 10 6
Ниобий 6.93 10 6
Осмий 10,9 10 6
Палладий 9,5 10 6
Платина 9,66 10 6
Калий 13,9 10 6
Рений 5,42 10 6
Родий 21,1 10 6
Рубидий 7.79 10 6
Рутений 13,7 10 6
Серебро 63 10 6
Натрий 21 10 6
Стронций 7,62 10 6
Тантал 7,61 10 6
Технеций 6,7 10 6
Таллий 6.17 10 6
Торий 6,53 10 6
Олово 9,17 10 6
Вольфрам 18,9 10 6
Цинк 16,6 10 6
Морская вода 4,5 - 5,5
Вода - питьевая 0,0005 - 0,05
Вода - деионизированная 5.5 10 -6

Электропроводность элементов относительно серебра

900,6
Элемент Электропроводность относительно серебра
Серебро 100,0
Медь 97,6
Золото 76,6
Алюминий 63,0
Тантал 54,6
Магний 39.4
Натрий 32,0
Бериллий 31,1
Барий 30,6
Цинк 29,6
Индий 27,0
Кадмий
Кальций 21,8
Рубидий 20,5
Цезий 20,0
Литий 18.7
Молибден 17,6
Кобальт 16,9
Уран 16,5
Хром 16,0
Марганец 15,8
Платина 14,4
Олово 14,4
Вольфрам 14,0
Осмий 14.0
Титан 13,7
Иридий 13,5
Рутений 13,2
Никель 12,9
Родий 12,6
Палладий Палладий
Сталь 12,0
Таллий 9,1
Свинец 8,4
Колумбий 5.1
Ванадий 5,0
Мышьяк 4,9
Сурьма 3,6
Ртуть 1,8
Висмут 1,4
Теллур 0,0

Электропроводность высокоочищенной воды

Удельное электрическое сопротивление

Электропроводность обратно пропорциональна удельному электрическому сопротивлению.Удельное электрическое сопротивление может быть выражено как

ρ = 1/ σ (2)

, где

ρ = удельное электрическое сопротивление (Ом · м 2 / м, Ом · м)

Сопротивление проводника

Сопротивление проводника можно выразить как

R = ρ l / A (3)

, где

R = сопротивление (Ом, Ом)

l = длина проводника (м)

A = площадь поперечного сечения проводника (м 2 )

Пример - сопротивление провода

Сопротивление 1000 м сечение медного провода # 10 с площадью поперечного сечения 5.26 мм 2 можно рассчитать как

R = (1,724 x 10 -8 Ом м 2 / м) (1000 м) / (( 5,26 мм 2 ) (10 - 6 м 2 / мм 2 ))

= 3,2 Ом

Преобразование удельного сопротивления и проводимости

900
Гран / галлон
как CaCO 3
ppm
как CaCO 3
ppm
NaCl
Электропроводность
мкмхо / см
Удельное сопротивление
МОм / см
99.3 1700 2000 3860 0,00026
74,5 1275 1500 2930 0,00034
49,6 850 1000 1990 0,00050
24,8 425 500 1020 0,00099
9,93 170 200 415 0.0024
7,45 127 150 315 0,0032
4,96 85,0 100 210 0,0048
2,48 42,5 50 105 0,0095
0,992 17,0 20 42,7 0,023
0,742 12,7 15 32.1 0,031
0,496 8,50 10 21,4 0,047
0,248 4,25 5,0 10,8 0,093
0,099 1,70 2,0 4,35 0,23
0,074 1,27 1,5 3,28 0,30
0,048 0.85 1,00 2,21 0,45
0,025 0,42 0,50 1,13 0,88
0,0099 0,17 0,20 0,49 2,05
0,13 0,15 0,38 2,65
0,0050 0,085 0,10 0,27 3.70
0,0025 0,042 0,05 0,16 6,15
0,00099 0,017 0,02 0,098 10,2
0,00070 0,012 0,01587 11,5
0,00047 0,008 0,010 0,076 13,1
0,00023 0.004 0,005 0,066 15,2
0,00012 0,002 0,002 0,059 16,9
  • зерен / галлон = 17,1 частей на миллион CaCO 3
Растворы

Электропроводность водных растворов, таких как

  • NaOH 4 - Каустическая сода
  • NH 4 Cl - Хлорид аммония, соляной аммиак
  • NaCl 2 - Поваренная соль
  • NaNO 3 - Нитрат натрия , Чилийская селитра
  • CaCl 2 - Хлорид кальция
  • ZnCl 2 - Хлорид цинка
  • NaHCO 3 - Бикарконат натрия, пищевая сода
  • Na 2 CO 3 карбонат натрия
  • CuSO 4 - Медный купорос, медный купорос

.

Industrial: Руководство по проектированию - электрическая и теплопроводность

Фото © 1998 AMP INC.

Электропроводность - это основная характеристика, отличающая медь от других металлов. Из коммерчески полезных металлов медь уступает только серебру. Но медные сплавы имеют широкий диапазон проводимости. Существуют сотни полосок из медных сплавов, из которых можно выбирать, и некоторые из них имеют такую ​​же низкую проводимость, как у железа. Еще больше усложняет ситуацию то, что вариации термической и механической обработки могут вызывать глубокие изменения проводимости.А металлы с самой высокой прочностью часто имеют самую низкую проводимость. Такие сплавы могут не подходить для применения в сильноточных соединителях.

Электропроводность полосовых металлов из медного сплава измеряется относительно стандартного стержня из «чистой» меди, которому давно присвоено значение 100. Таким образом, когда говорят, что латунь содержит 28% IACS, это означает, что удельная электропроводность составляет 28% от этот стандарт. [«IACS» - это международный стандарт отожженной меди]. Благодаря усовершенствованию технологий рафинирования металлов технически чистая медь сегодня имеет немного лучшую проводимость (101% IACS), чем стандартная.

Единая система нумерации (UNS) не классифицирует медные сплавы напрямую на группы с аналогичной проводимостью. Но он определяет «медь» как «медь, у которой установленное минимальное содержание меди составляет 99,3% или выше». Далее в нем говорится, что «сплавы с высоким содержанием меди» - это «… сплавы с… менее 99,3%, но более 96%…». Содержание меди играет важную роль в проводимости медных сплавов. Однако различные легирующие элементы, добавленные в медь, по-разному влияют на проводимость меди.Серебро, например, не вызывает измеримого эффекта, тогда как незначительное количество фосфора может сильно снизить проводимость.

Теплопроводность также является важным параметром в конструкции разъема. Внутри семейств сплавов теплопроводность обычно связана с электропроводностью. Сплавы с более высокой электропроводностью будут иметь более высокую теплопроводность. Это удобно, поскольку теплопроводность довольно сложно измерить, в то время как электропроводность или ее обратное удельное сопротивление легко измерить.

Сплавы с более высоким удельным сопротивлением (r) будут тратить больше энергии, так как тепло, выделяемое электрическим током (I), пропорционально I 2 , умноженному на сопротивление. Что еще более важно, выделяемое тепло повысит температуру разъема, что может иметь неблагоприятные последствия для характеристик разъема и его окружения. Сплавы с более высокой теплопроводностью позволяют конструктору рассеивать часть этого тепла, сводя к минимуму повышение температуры. Такая высокая проводимость обычно является востребованным свойством сплавов соединителей.

.

Электропроводность

Электропроводность

Электропроводность - мера легкость, с которой электрический заряд или тепло могут проходить через материал. А проводник - это материал, который дает очень небольшое сопротивление потоку электрический ток или тепловая энергия. Материалы классифицируются как металлы, полупроводники и изоляторы. Металлы - самые проводящие и изоляторы. (керамика, дерево, пластмассы) наименее проводящие.
Электропроводность говорит нам, насколько хорошо материал позволяет электричеству проходить через него. Многие думают о медных проводах как о чем-то, что имеет отличные электрические характеристики. проводимость.
Теплопроводность говорит нам, с какой легкостью тепловая энергия (тепло для большинства целей) может перемещаться по материалу.Некоторые материалы, такие как металлы, позволяют теплу перемещаться через них довольно быстро. Представьте, что одной рукой вы касаетесь кусок металла, а с другой - кусок дерева. Какой материал становится холоднее? Если бы вы сказали «металл», вы были бы правы. Но, Фактически, оба материала имеют одинаковую температуру. Это относительно теплопроводность. Металл обладает более высокой теплопередачей или термической способностью. проводимость, чем у дерева, позволяя теплу от руки уходить быстрее.Если вы хотите, чтобы что-то оставалось холодным, лучше всего это завернуть во что-нибудь который не обладает высокой теплопередачей или высокой теплопроводностью, это был бы изолятор. Керамика и полимеры обычно являются хорошими изоляторами, но вы должны помнить, что полимеры обычно имеют очень низкую температуру плавления. Это означает, что если вы разрабатываете что-то, что сильно нагревается, полимер может расплавиться, в зависимости от температуры плавления.

Серебро имеет самую высокую электропроводность из всех металлов. На самом деле серебро определяет проводимость - все другие металлы сравниваются с Это. По шкале от 0 до 100 серебро занимает 100 место, медь - 97, а золото. на 76. Из-за этого свойства, а также из-за того, что он не зажигает легко, серебро обычно используется в электрических цепях и контактах. Серебро также используется в аккумуляторах, где надежность является обязательной и применяются ограничения по весу, например, для портативных хирургических инструментов, слуховых аппаратов, кардиостимуляторов и космическое путешествие.

ССЫЛКИ

http://www.physics4kids.com/files/elec_conduct.html
План урока для учителей о проводимости - http://www.infinitepower.org/pdf/09-Lesson-Plan.pdf


Все информация на этой странице взята из U of C - Щелкните по Кембриджскому университету значок для благодарностей.
.

Что такое электрический проводник? Определение и типы электрических проводников

Определение: Проводник - это тип металла, который позволяет электрическому току проходить через него. Электрический проводник обычно состоит из металлов, таких как медь, алюминий и их сплавы. В электрическом проводнике электрические заряды перемещаются от атома к атому, когда к ним прикладывается разность потенциалов. Электрические проводники используются в виде проволоки. Выбор проводника можно принять во внимание, учитывая различные факторы, такие как прочность на разрыв, усталостная прочность, потери на коронный разряд, местные условия и стоимость.

Электрический провод, который используется для передачи энергии, обычно многожильный. Многожильные проводники обладают большой гибкостью и механической прочностью по сравнению с одиночным проводом того же сечения. В многожильном проводе обычно центральный провод окружен последовательными слоями проводов, содержащих 6, 12, 18, 24,… проводов.

Размер проводника определяется эквивалентной площадью поперечного сечения меди и количеством жил с диаметром каждой жилы.Эквивалентное поперечное сечение многожильного проводника - это площадь поперечного сечения одножильного проводника из того же материала и длины, что и многожильный провод. А также проводник, имеющий такое же сопротивление при той же температуре.

Типы электрических проводов

Жестко вытянутые медные, твердотянутые алюминиевые проводники и алюминиевые проводники с сердечником из стали чаще всего используются в энергетике. Некоторые из важных типов проводников подробно описаны ниже.

Жестко вытянутый медный проводник

Такой тип проводов обеспечивает высокую прочность на разрыв.Он обладает высокой электропроводностью, долгим сроком службы и высокой стоимостью лома. Он наиболее подходит для распределительных работ, когда пролеты и отводы больше.

Кадмий медный проводник

Предел прочности на разрыв меди увеличивается примерно на 50 процентов за счет добавления к ней от 0,7 до 1,0 процента кадмия, но их проводимость снижается примерно на 15-17 процентов. Свойство более высокой прочности на разрыв позволяет возводить проводник на более длинные пролеты с таким же прогибом. Этот проводник обладает такими преимуществами, как простота соединения, большая устойчивость к атмосферным условиям, лучшая износостойкость, легкая обрабатываемость и т. Д.

Температура, при которой медь отжигается и размягчается, также повышается, а влияние температуры на напряжения меньше. Изменение провеса из-за изменений нагрузки и температуры сведено к минимуму.

Медный проводник со стальным сердечником (SCC)

В медном проводнике со стальным сердечником один или два слоя медных жил окружают медные проводники со стальным сердечником. Стальной сердечник увеличивает прочность на разрыв.

Медный сварной провод

В проводниках такого типа однородные слои меди привариваются к стальной проволоке.Электропроводность медного сварного проводника варьируется от 30 до 60 процентов по сравнению со сплошным медным проводником того же диаметра. Такие типы проводов можно использовать на более длительных участках, например, при переходе через реку.

Жестко вытянутый алюминиевый проводник или полностью алюминиевый проводник

Стоимость медного проводника очень высока, поэтому его заменяют алюминиевым. Обработка, транспортировка и монтаж алюминиевых проводов становятся очень экономичными. Он используется в распределительных линиях в городской местности и коротких линиях электропередачи с более низким напряжением.

Алюминиевый проводник, армированный сталью

Все алюминиевые жилы не обладают достаточной механической прочностью для строительства длиннопролетных линий. Этот недостаток прочности можно компенсировать, добавив к проводнику стальной сердечник. Такой проводник называется алюминиевым проводником со стальным сердечником (SCA) или алюминиевым проводником, армированным сталью (ACSR).

Провод ACSR имеет семь стальных жил, образующих центральную жилу, вокруг которой расположены два слоя из 30 алюминиевых жил.Скрутка проводов определяется как 30 Al / 7 St. Проводники ACSR обладают высокой прочностью на разрыв и легким весом, поэтому они используются для небольшого прогиба.

Гладкий провод ACSR

Такой тип жилы еще называют уплотненным ACSR. Обычный провод ACSR продавливают через матрицы для придания алюминиевым жилам сегментарной формы. Межпрядное пространство заполняется, а диаметр проводника уменьшается, не влияя на его электрические и механические свойства.Этот проводник может быть выполнен с различным соотношением алюминия к стали. На рисунке ниже показан проводник с соотношением 6 Al / 1 St.

.

Расширенный проводник ACSR

Для уменьшения потерь на коронный разряд и радиопомех при высоком напряжении между нитями залиты волокнистый или пластиковый материал. Диаметр проводника увеличивается из-за наполнителя, поэтому его называют расширенным проводником. Эти проводники состоят из бумажного материала, который отделяет внутренние алюминиевые жилы от внешних стальных.

Проводник из алюминиевого сплава

Такой тип проводов чаще всего используется в городских условиях. Этот проводник имеет хорошее сочетание проводимости и прочности на разрыв. Одним из сплавов, которые используются для изготовления такого проводника, является Silmalec. Этот сплав содержит 0,5% кремния, 0,5% магния и остальное алюминий. Эти сплавы очень дороги, так как они подвергаются термообработке.

Проводник ACAR

Армированный алюминиевый проводник

имеет центральную сердцевину из алюминиевого сплава, окруженную слоями проводящего алюминия.Такой проводник дает лучшую проводимость при удельном весе, равном конструкции ACSR того же диаметра.

Проводник из алюмосварки

Алюминиевый порошок приваривается к высокопрочной стальной проволоке. Около 75% площади проводника покрыто алюминием. Это дороже, чем кремниевый провод с сердечником. Для изготовления жил SCA проводов использовался заземляющий провод.

Проводник из фосфорной бронзы

Фосфорная бронза используется в качестве проводящего материала на очень длинных участках, например, при переправе через реки.Он прочнее медного проводника, но имеет низкую проводимость. Этот проводник превосходит проводник из алюминиевой бронзы для сред, содержащих вредные газы, такие как аммиак.

Проводник из оцинкованной стали

Трос из оцинкованной стали имеет высокую прочность на разрыв. Они используются в очень длинных пролетах и ​​в сельской местности, где нагрузка невелика. В таких случаях стальные проводники могут быть заменены проводником со стальным сердечником, чтобы справиться с дополнительной нагрузкой в ​​будущем. Этот проводник имеет большое сопротивление, индуктивность и падение напряжения.Но у него небольшой срок службы по сравнению с другими проводниками.

.

Смотрите также