Чему равно среднее число электронов проводимости в металле при температуре


Электрический ток в металлах

Электрический ток в металлах – это упорядоченное движение электронов под действием электрического поля. Опыты показывают, что при протекании тока по металлическому проводнику переноса вещества не происходит, следовательно, ионы металла не принимают участия в переносе электрического заряда.

Наиболее убедительное доказательство электронной природы тока в металлах было получено в опытах с инерцией электронов. Идея таких опытов и первые качественные результаты (1913 г.) принадлежат русским физикам Л.И. Мандельштаму и Н.Д. Папалекси В 1916 году американский физик Р. Толмен и шотландский физик Б. Стюарт усовершенствовали методику этих опытов и выполнили количественные измерения, неопровержимо доказавшие, что ток в металлических проводниках обусловлен движением электронов.

Схема опыта Толмена и Стюарта показана на рис. 1.12.1. Катушка с большим числом витков тонкой проволоки приводилась в быстрое вращение вокруг своей оси. Концы катушки с помощью гибких проводов были присоединены к чувствительному баллистическому гальванометру Г. Раскрученная катушка резко тормозилась, и в цепи возникал кратковременных ток, обусловленный инерцией носителей заряда. Полный заряд, протекающий по цепи, измерялся по отбросу стрелки гальванометра.

Рисунок 1.12.1.

Схема опыта Толмена и Стюарта

При торможении вращающейся катушки на каждый носитель заряда e действует тормозящая сила  которая играет роль сторонней силы, то есть силы неэлектрического происхождения. Сторонняя сила, отнесенная к единице заряда, по определению является напряженностью Eст поля сторонних сил:

Следовательно, в цепи при торможении катушки возникает электродвижущая сила , равная

где l – длина проволоки катушки. За время торможения катушки по цепи протечет заряд q, равный

 

Здесь I – мгновенное значение силы тока в катушке, R – полное сопротивление цепи, υ0 – начальная линейная скорость проволоки.

Отсюда удельный заряд e / m свободных носителей тока в металлах равен:

Все величины, входящие в правую часть этого соотношения, можно измерить. На основании результатов опытов Толмена и Стюарта было установлено, что носители свободного заряда в металлах имеют отрицательный знак, а отношение заряда носителя к его массе близко к удельному заряду электрона, полученному из других опытов. Так было установлено, что носителями свободных зарядов в металлах являются электроны.

По современным данным модуль заряда электрона (элементарный заряд) равен

а его удельный заряд есть

Хорошая электропроводность металлов объясняется высокой концентрацией свободных электронов, равной по порядку величины числу атомов в единице объема.

Предположение о том, что за электрический ток в металлах ответственны электроны, возникло значительно раньше опытов Толмена и Стюарта. Еще в 1900 году немецкий ученый П. Друде на основании гипотезы о существовании свободных электронов в металлах создал электронную теорию проводимости металлов. Эта теория получила развитие в работах голландского физика Х. Лоренца и носит название классической электронной теории. Согласно этой теории, электроны в металлах ведут себя как электронный газ, во многом похожий на идеальный газ. Электронный газ заполняет пространство между ионами, образующими кристаллическую решетку металла (рис. 1.12.2).

Рисунок 1.12.2.

Газ свободных электронов в кристаллической решетке металла. Показана траектория одного из электронов

Из-за взаимодействия с ионами электроны могут покинуть металл, лишь преодолев так называемый потенциальный барьер. Высота этого барьера называется работой выхода. При обычных (комнатных) температурах у электронов не хватает энергии для преодоления потенциального барьера.

Из-за взаимодействия с кристаллической решеткой потенциальная энергия выхода электрона внутри проводника оказывается меньше, чем при удалении электрона из проводника. Электроны в проводнике находятся в своеобразной «потенциальной яме», глубина которой и называется потенциальным барьером.

Как ионы, образующие решетку, так и электроны участвуют в тепловом движении. Ионы совершают тепловые колебания вблизи положений равновесия – узлов кристаллической решетки. Свободные электроны движутся хаотично и при своем движении сталкиваются с ионами решетки. В результате таких столкновений устанавливается термодинамическое равновесие между электронным газом и решеткой. Согласно теории Друде–Лоренца, электроны обладают такой же средней энергией теплового движения, как и молекулы одноатомного идеального газа. Это позволяет оценить среднюю скорость  теплового движения электронов по формулам молекулярно-кинетической теории. При комнатной температуре она оказывается примерно равной 105 м/с.

При наложении внешнего электрического поля в металлическом проводнике кроме теплового движения электронов возникает их упорядоченное движение (дрейф), то есть электрический ток. Среднюю скорость   дрейфа можно оценить из следующих соображений. За интервал времени Δt через поперечное сечение S проводника пройдут все электроны, находившиеся в объеме

Число таких электронов равно , где n – средняя концентрация свободных электронов, примерно равная числу атомов в единице объема металлического проводника. Через сечение проводника за время Δt пройдет заряд   Отсюда следует:

или

Концентрация n атомов в металлах составляет  1028–1029 м–3.

Оценка по этой формуле для металлического проводника сечением 1 мм2, по которому течет ток 10 А, дает для средней скорости   упорядоченного движения электронов значение в пределах 0,6–6 мм/c. Таким образом,

средняя скорость  упорядоченного движения электронов в металлических проводниках на много порядков меньше средней скорости  их теплового движения

Рис. 1.12.3 дает представление о характере движения свободного электрона в кристаллической решетке.

Рисунок 1.12.3.

Движение свободного электрона в кристаллической решетке: а – хаотическое движение электрона в кристаллической решетке металла; b – хаотическое движение с дрейфом, обусловленным электрическим полем. Масштабы дрейфа  сильно преувеличены

Малая скорость дрейфа на противоречит опытному факту, что ток во всей цепи постоянного тока устанавливается практически мгновенно. Замыкание цепи вызывает распространение электрического поля со скоростью c = 3·108 м/с. Через время порядка l / c (l – длина цепи) вдоль цепи устанавливается стационарное распределение электрического поля и в ней начинается упорядоченное движение электронов.

В классической электронной теории металлов предполагается, что движение электронов подчиняется законам механики Ньютона. В этой теории пренебрегают взаимодействием электронов между собой, а их взаимодействие с положительными ионами сводят только к соударениям. Предполагается также, что при каждом соударении электрон передает решетке всю накопленную в электрическом поле энергию и поэтому после соударения он начинает движение с нулевой дрейфовой скоростью.

Несмотря на то, что все эти допущения являются весьма приближенными, классическая электронная теория качественно объясняет законы электрического тока в металлических проводниках.

Закон Ома. В промежутке между соударениями на электрон действует сила, равная по модулю eE, в результате чего он приобретает ускорение  . Поэтому к концу свободного пробега дрейфовая скорость электрона равна

где τ – время свободного пробега, которое для упрощения расчетов предполагается одинаковым для всех электронов. Среднее значение скорости дрейфа  равно половине максимального значения:

Рассмотрим проводник длины l и сечением S с концентрацией электронов n. Ток в проводнике может быть записан в виде:

где U = El – напряжение на концах проводника. Полученная формула выражает закон Ома для металлического проводника. Электрическое сопротивление проводника равно:

а удельное сопротивление ρ и удельная проводимость ν выражаются соотношениями:

Закон Джоуля-Ленца.

К концу свободного пробега электроны под действием поля приобретают кинетическую энергию

Согласно сделанным предположениям вся эта энергия при соударениях передается решетке и переходит в тепло.

За время Δt каждый электрон испытывает Δt / τ соударений. В проводнике сечением S и длины l имеется nSl электронов. Отсюда следует, что выделяемое в проводнике за время Δt тепло равно:

Это соотношение выражает закон Джоуля-Ленца.

Таким образом, классическая электронная теория объясняет существование электрического сопротивления металлов, законы Ома и Джоуля–Ленца. Однако в ряде вопросов классическая электронная теория приводит к выводам, находящимся в противоречии с опытом.

Эта теория не может, например, объяснить, почему молярная теплоемкость металлов, также как и молярная теплоемкость диэлектрических кристаллов, равна 3R, где R – универсальная газовая постоянная (закон Дюлонга и Пти, см. ч. I, § 3.10). Наличие свободных электронов на сказывается на величине теплоемкости металлов.

Классическая электронная теория не может также объяснить температурную зависимость удельного сопротивления металлов. Теория дает соотношение  , в то время как из эксперимента получается зависимость ρ ~ T. Однако наиболее ярким примером расхождения теории и опытов является сверхпроводимость.

Согласно классической электронной теории, удельное сопротивление металлов должно монотонно уменьшаться при охлаждении, оставаясь конечным при всех температурах. Такая зависимость действительно наблюдается на опыте при сравнительно высоких температурах. При более низких температурах порядка нескольких кельвинов удельное сопротивление многих металлов перестает зависеть от температуры и достигает некоторого предельного значения. Однако наибольший интерес представляет удивительное явление сверхпроводимости, открытое датским физиком Х.Каммерлинг-Онесом в 1911 году. При некоторой определенной температуре Tкр, различной для разных веществ, удельное сопротивление скачком уменьшается до нуля (рис. 1.12.4). Критическая температура у ртути равна 4,1 К, у аллюминия 1,2 К, у олова 3,7 К. Сверхпроводимость наблюдается не только у элементов, но и у многих химических соединений и сплавов. Например, соединение ниобия с оловом (Ni3Sn) имеет критическую температуру 18 К. Некоторые вещества, переходящие при низких температурах в сверхпроводящее состояние, не являются проводниками при обычных температурах. В то же время такие «хорошие» проводники, как медь и серебро, не становятся сверхпроводниками при низких температурах.

Рисунок 1.12.4.

Зависимость удельного сопротивления ρ от абсолютной температуры T при низких температурах: a – нормальный металл; b – сверхпроводник

Вещества в сверхпроводящем состоянии обладают исключительными свойствами. Практически наиболее важным их них является способность длительное время (многие годы) поддерживать без затухания электрический ток, возбужденный в сверхпроводящей цепи.

Классическая электронная теория не способна объяснить явление сверхпроводимости. Объяснение механизма этого явления было дано только через 60 лет после его открытия на основе квантово-механических представлений.

Научный интерес к сверхпроводимости возрастал по мере открытия новых материалов с более высокими критическими температурами. Значительный шаг в этом направлении был сделан в 1986 году, когда было обнаружено, что у одного сложного керамического соединения Tкр = 35 K. Уже в следующем 1987 году физики сумели создать новую керамику с критической температурой 98 К, превышающей температуру жидкого азота (77 К). Явление перехода веществ в сверхпроводящее состояние при температурах, превышающих температуру кипения жидкого азота, было названо высокотемпературной сверхпроводимостью. В 1988 году было создано керамическое соединение на основе элементов Tl–Ca–Ba–Cu–O с критической температурой 125 К.

В настоящее время ведутся интенсивные работы по поиску новых веществ с еще более высокими значениями Tкр. Ученые надеятся получить вещество в сверхпроводящем состоянии при комнатной температуре. Если это произойдет, это будет настоящей революцией в науке, технике и вообще в жизни людей.

Следует отметить, что до настоящего времени механизм высокотемпературной сверхпроводимости керамических материалов до конца не выяснен.

проводимости в полупроводниках | PVEducation

Обзор

  1. Полупроводники действуют как изоляторы при низких температурах и проводники при более высоких температурах.
  2. Проводимость возникает при более высокой температуре, потому что электроны, окружающие атомы полупроводника, могут разорвать свою ковалентную связь и свободно перемещаться по решетке
  3. Электропроводящие свойства полупроводников составляют основу понимания того, как мы можем использовать эти материалы в электрических устройствах.

Структура связи полупроводника определяет свойства материала полупроводника. Одним из ключевых эффектов являются уровни энергии, которые могут занимать электроны, и то, как они перемещаются по кристаллической решетке. Электроны в ковалентной связи, образованной между каждым из атомов в структуре решетки, удерживаются на месте этой связью и, следовательно, они локализованы в области, окружающей атом. Эти связанные электроны не могут перемещаться или изменять энергию и, следовательно, не считаются «свободными» и не могут участвовать в протекании тока, поглощении или других физических процессах, представляющих интерес в солнечных элементах. Однако только при абсолютном нуле все электроны в этой "застрявшей" связанной структуре. При повышенных температурах, особенно при температурах, в которых работают солнечные элементы, электроны могут получить достаточно энергии, чтобы вырваться из своих связей. Когда это происходит, электроны могут свободно перемещаться по кристаллической решетке и участвовать в проводимости. При комнатной температуре в полупроводнике достаточно свободных электронов, чтобы проводить ток. При абсолютном нуле или близком к нему полупроводник ведет себя как изолятор.

Когда электрон набирает достаточно энергии, чтобы участвовать в проводимости («свободный»), он находится в состоянии высокой энергии. Когда электрон связан, а значит, не может

.

Как передается тепло? Электропроводность - Конвекция - Излучение

Что такое тепло?

Вся материя состоит из молекул и атомов. Эти атомы всегда находятся в разных типах движения (поступательное, вращательное, колебательное). Движение атомов и молекул создает тепло или тепловую энергию. Вся материя обладает этой тепловой энергией. Чем больше движения имеют атомы или молекулы, тем больше тепла или тепловой энергии они будут иметь.

Это анимация, сделанная из короткого молекулярного динамического моделирование воды.Зеленые линии представляют собой водородные связи между кислородом и водород. Обратите внимание на плотную структуру воды

Водородные связи намного слабее ковалентных связей. Однако при большом количестве водорода облигации действуют в унисон, они окажут сильное влияние. В этом случае в воде показано здесь.

Жидкая вода имеет частично заказанный структура, в которой постоянно образуются и разрываются водородные связи. Из-за небольшой шкалы времени (порядка нескольких пикосекунд) мало связей

Что такое температура?

Из видео выше, где показано движение атомов и молекул, видно, что некоторые движутся быстрее, чем другие.Температура - это среднее значение энергии для всех атомов и молекул в данной системе. Температура не зависит от количества вещества в системе. Это просто среднее значение энергии в системе.

Как передается тепло?

Тепло может перемещаться из одного места в другое тремя способами: проводимостью, конвекцией и излучением. И теплопроводность, и конвекция требуют вещества для передачи тепла.

Если существует разница температур между двумя системами, тепло всегда найдет способ перейти от более высокой системы к более низкой.

ПРОВОДИМОСТЬ - -

Проводимость - это передача тепла между веществами, находящимися в непосредственном контакте друг с другом. Чем лучше проводник, тем быстрее будет передаваться тепло. Металл хорошо проводит тепло. Проводимость возникает, когда вещество нагревается, частицы получают больше энергии и больше вибрируют. Затем эти молекулы сталкиваются с соседними частицами и передают им часть своей энергии.Затем это продолжается и передает энергию от горячего конца к более холодному концу вещества.

КОНВЕКЦИЯ -

Тепловая энергия передается из жарких мест в холодные посредством конвекции. Конвекция возникает, когда более теплые области жидкости или газа поднимаются к более холодным областям жидкости или газа. Более холодная жидкость или газ тогда заменяют более теплые области, которые поднялись выше. Это приводит к непрерывной схеме циркуляции.Кипящая вода в кастрюле - хороший пример таких конвекционных потоков. Еще один хороший пример конвекции - это атмосфера. Поверхность земли нагревается солнцем, теплый воздух поднимается вверх, а прохладный входит внутрь.

ИЗЛУЧЕНИЕ- -

Излучение - это метод передачи тепла, который не зависит от какого-либо контакта между источником тепла и нагретым объектом, как в случае с теплопроводностью и конвекцией. Тепло может передаваться через пустое пространство с помощью теплового излучения, которое часто называют инфракрасным излучением.Это разновидность электромагнитного излучения. В процессе излучения не происходит обмена масс и среды. Примеры излучения - это тепло солнца или тепло, выделяемое нитью лампочки.

ВЫБОР ИСТОЧНИКОВ И ЧИТАТЕЛЕЙ -

Тепло и температура от Cool Cosmo - НАСА

Вот хороший апплет для демонстрации движения молекул - вы можете контролировать температуру и видеть в этом апплете, как меняются движения молекул.

Важные температуры в кулинарии и кулинарных навыках

.

ИЗЛУЧЕНИЕ ЭЛЕКТРОНА

1. Электронная трубка зависит от своего воздействия на поток электронов, которые действуют как носители тока. Для создания этого потока электронов в каждой трубке есть специальный металлический электрод (катод). Но при обычных комнатных температурах свободные электроны катода не могут покинуть его поверхность из-за определенных сдерживающих сил, которые действуют как барьер. Эти поверхностные силы притяжения стремятся удерживать электроны внутри катодного вещества, за исключением небольшой части, которая обладает достаточной кинетической энергией (энергией движения) для прорыва через барьер.Большинство электронов движутся слишком медленно, чтобы это произошло.

2. Чтобы покинуть поверхность материала, электроны должны совершить определенную работу, чтобы преодолеть сдерживающие поверхностные силы. Для выполнения этой работы электроны должны иметь достаточную энергию, сообщаемую им от какого-либо внешнего источника энергии, поскольку их собственная кинетическая энергия недостаточна. Существует четыре основных метода получения электронной эмиссии с поверхности материала: термоэлектронная эмиссия, фотоэлектрическая эмиссия, автоэлектронная эмиссия и вторичная эмиссия.

3. Термоэлектронная эмиссия. Это самый важный и наиболее часто используемый в электронных лампах. В этом методе металл нагревается, что приводит к увеличению тепловой или кинетической энергии несвязанных электронов. Таким образом, большее количество электронов достигнет достаточной скорости и энергии, чтобы покинуть поверхность эмиттера. Количество электронов, высвобождаемых на единицу площади излучающей поверхности, связано с абсолютной температурой катода и количеством работы, которую электрон должен совершить, покидая излучающую поверхность.

4. Термоэлектронная эмиссия достигается за счет электрического нагрева катода. Это можно сделать двумя способами: 1) используя электроны, испускаемые нагревательной спиралью для проведения тока (прямой нагрев), или 2) размещая нагревательную спираль в никелевом цилиндре, покрытом оксидом бария, который излучает электроны (косвенный обогрев). Обычно используется метод непрямого нагрева.



5. Фотоэлектрическая эмиссия. В этом процессе энергия светового излучения, падающего на поверхность металла, передается свободным электронам внутри металла и ускоряет их в достаточной степени, чтобы они могли покинуть поверхность.

6. Автоэлектронная эмиссия или эмиссия с холодным катодом. Приложение сильного электрического поля (т. Е. Высокого положительного напряжения за пределами поверхности катода) буквально вытягивает электроны с поверхности материала из-за притяжения положительного поля. Чем сильнее поле, тем больше автоэлектронная эмиссия с холодной поверхности эмиттера.

7. Вторичная эмиссия. Когда высокоскоростные электроны внезапно ударяются о металлическую поверхность, они отдают свою кинетическую энергию электронам и атомам, на которые они ударяются.Некоторые из бомбардирующих электронов сталкиваются непосредственно со свободными электронами на поверхности металла и могут выбить их с поверхности. Электроны, освобожденные таким образом, известны как вторичные электроны эмиссии, поскольку первичные электроны из какого-то другого источника должны быть доступны для бомбардировки вторичной электронной эмиссионной поверхности.

УПРАЖНЕНИЯ:

1. Контрольные вопросы:

1. От чего зависит действие электронной лампы? 2.Что присутствует в каждой трубке для создания потока электронов? 3. При каких температурах свободные электроны не могут покинуть поверхность катода? 4. Какие силы удерживают электроны внутри катодного вещества? 5. Что должны сделать электроны, чтобы убежать? 6. Что должны иметь электроны, чтобы преодолеть сдерживающие поверхностные силы? 7. Сколько существует методов получения электронной эмиссии? 8. Какие они? 9. Что сообщает внешнюю энергию электронам при термоэлектронной эмиссии? 10. Какая энергия используется для образования свободных электронов при фотоэмиссии? 11.Что такое автоэлектронная эмиссия?

12. Как получается вторичная эмиссия? 13. Какое излучение чаще всего используется в электронике?

2. Переводите международные слова без словаря.

катод, эмиттер, материал, цилиндр, часть, энергия, излучение, температура, термический, адекватный, абсолютный, специальный, эмиссия, электрон, обычно

3. Определите, к каким частям речи принадлежат эти слова, и переведите их :

реализовывать, выравнивать, электрифицировать, классифицировать, создавать, усиливать, расширять, увеличивать, расширять, аналогично, иначе, вперед, к, вверх, наружу, вниз

Текст 5 Прочтите и переведите текст.

ДИОДЫ

1. Простейшей комбинацией элементов, составляющих электронную лампу, является диод. Он состоит из катода, который служит для испускания электронов, и пластины или анода, окружающей катод, который действует как коллектор электронов. Оба электрода заключены в герметичную оболочку из стекла или металла. Если катод нагревается косвенно, должна быть спираль или нагреватель. Размер диодных трубок варьируется от крошечных металлических трубок до выпрямителей большого размера.Пластина обычно представляет собой полый металлический цилиндр из никеля, молибденового графита, тантала или железа.



2. Основной закон электричества гласит, что одинаковые заряды отталкиваются друг от друга, а разные заряды притягиваются друг к другу. Электроны, испускаемые катодом электронной лампы, являются отрицательными электрическими зарядами. Эти заряды могут либо притягиваться, либо отталкиваться от пластины диодной лампы, в зависимости от того, заряжена пластина положительно или отрицательно.

3.Фактически, при приложении разности потенциалов (напряжения) от батареи или другого источника между пластиной и катодом диода внутри трубки создается электрическое поле. Силовые линии этого поля всегда проходят от отрицательно заряженного элемента к положительно заряженному. Электроны, будучи отрицательными электрическими зарядами, следуют направлению силовых линий в электрическом поле.

4. Установив электрическое поле правильной полярности между катодом и пластиной и «сформировав» силовые линии этого поля на определенных траекториях, 1 можно управлять движением электронов по желанию.Батарея подключается между пластиной и катодом диода, чтобы сделать пластину положительной по отношению к катоду, при этом силовые линии электрического поля проходят в направлении от катода к пластине.

5. И снова, приложение напряжения нагревателя приводит к эмиссии электронов с катода. Электроны следуют по силовым линиям к положительной пластине и ударяют по ней с высокой скоростью. Поскольку движущиеся заряды содержат электрический ток, поток электронов к пластине представляет собой электрический ток, называемый током пластины.

6. Достигнув пластины, электронный ток продолжает течь по внешней цепи, состоящей из соединительных проводов и батареи. Поступающие электроны поглощаются положительной клеммой батареи, и такое же количество электронов вытекает из отрицательной клеммы батареи и возвращается на катод, таким образом восполняя запас электронов, потерянных при эмиссии.

7. Пока катод трубки поддерживается при температурах излучения, а пластина остается положительной, ток пластины будет продолжать течь от катода к пластине внутри трубки и от пластины обратно к катоду через внешнюю цепь.

8. Теперь подключение батареи поменялось местами, чтобы сделать пластину отрицательной по отношению к катоду. Когда на нагреватель подается напряжение, катод испускает поток электронов. Однако эти электроны сильно отталкиваются от отрицательно заряженной пластины и стремятся заполнить межэлектродное пространство между катодом и пластиной. Поскольку электроны фактически не достигают пластины, трубка действует как разомкнутая цепь.

9. Общее количество электронов, испускаемых катодом диода, всегда одинаково при данной рабочей температуре.Напряжение на пластине (напряжение между пластиной и катодом) не влияет, следовательно, на количество электронов, испускаемых катодом. Однако достигают ли эти электроны пластины на самом деле, определяется напряжением между пластиной и катодом, 2 , а также явлением, известным как объемный заряд.

10. Термин объемный заряд применяется к облаку электронов, которое образуется в межэлектродном пространстве между катодом и пластиной. Поскольку оно состоит из электронов, это облако представляет собой отрицательный заряд в межэлектродном пространстве, который оказывает отталкивающее действие на электроны, испускаемые катодом.Таким образом, эффект одного только этого отрицательного объемного заряда заключается в том, чтобы заставить значительную часть испускаемых электронов вернуться обратно в катод и предотвратить попадание других электронов на пластину.

11. Объемный заряд, однако, действует не сам по себе. Ему противодействует электрическое поле от положительной пластины, которое проникает сквозь объемный заряд, притягивая электроны и, таким образом, частично преодолевая его эффекты. При низких положительных напряжениях пластины только ближайшие к ней электроны притягиваются к ней и образуют небольшой ток пластины.Тогда объемный заряд оказывает сильное влияние на ограничение количества электронов, достигающих пластины.

12. По мере увеличения напряжения на пластине большее количество электронов притягивается к пластине через отрицательный пространственный заряд и, соответственно, меньшее количество электронов отталкивается обратно на катод. Если напряжение на пластине сделать достаточно высоким, в конечном итоге достигается точка, в которой все электроны, испускаемые катодом, притягиваются к пластине, и влияние объемного заряда полностью преодолевается.Дальнейшее увеличение напряжения на пластине не может увеличить ток пластины через трубку, а эмиссия с катода ограничивает максимальный ток.

Дата: 02.07.2015; вид: 1257;

.

Материалы Экзамен 3 Карточки

Срок
Что такое коррозия?
• ______ материалов в результате реакций с
их ______.
• Материалы: металлы, полимеры и керамика
• Окружающая среда: жидкости и газы, иногда твердые вещества
• Температура окружающей среды или повышенные температуры
Определение
Что такое коррозия?
• ПОВРЕЖДЕНИЕ материалов из-за реакций с
их ОКРУЖАЮЩЕЙ СРЕДЫ.
• Материалы: металлы, полимеры и керамика
• Окружающая среда: жидкости и газы, иногда твердые вещества
• Температура окружающей среды или повышенные температуры
Срок
- Экономика и ______!
•> Проблема на 275 миллиардов долларов в США
• Устранение опасных для жизни отказов
• Предотвращение дорогостоящего ремонта на производственных предприятиях.
• ____ расширение - мониторинг состояния конструкций
Определение
- Экономика и БЕЗОПАСНОСТЬ!
•> Проблема на 275 миллиардов долларов в США.S.
• Устранение опасных для жизни отказов
• Предотвращение дорогостоящего ремонта на производственных предприятиях.
• LIFE extension - мониторинг состояния конструкций
Срок
ЭЛЕКТРОХИМИЧЕСКАЯ КОРРОЗИЯ

Необходимы две реакции:

- реакция окисления, протекает в ____, также называемая реакцией _____
- реакция восстановления происходит в ____, также называемая _____ реакцией

Определение
ЭЛЕКТРОХИМИЧЕСКАЯ КОРРОЗИЯ

Необходимы две реакции:

- реакция окисления, происходит на АНОДЕ, также называемая АНОДНОЙ реакцией
- реакция восстановления происходит на КАТОДЕ, также называемая КАТОДНОЙ реакцией

Срок
• Прочие реакции восстановления в растворах с растворенными _____:
- кислотный раствор - нейтральный или основной раствор
Определение
• Другие реакции ВОССТАНОВЛЕНИЯ в растворах с растворенным КИСЛОРОДОМ:

- кислотный раствор, O2, H + и е- соединение для получения воды
- нейтральный или щелочной раствор, O2, вода и е- соединение для получения OH

По сути, будут две реакции восстановления, поддерживающие реакцию окисления

** Реакция, которая нас больше всего волнует с точки зрения коррозии металла, - это анодная реакция **

Срок
Катодная реакция - это когда вы ____ электронов
Анодная реакция - это когда вы ____ электронов
Определение
Катодная (восстановительная) реакция - это когда вы ИСПОЛЬЗУЕТЕ электроны
Анодная (окислительная) реакция - это когда вы ОТДАВАЕТЕ электроны
Условие
На самом деле на поверхности металла есть _____ участков, которые
служат катодами, а другие - анодами.

• Для низкоуглеродистой стали в HCl на катодах выделяется h3, но через
раз может появиться _____ коррозия, потому что анодная и катодная площади изменяются на ____.

Определение
В действительности, на металлической поверхности есть ЛОКАЛИЗИРОВАННЫЕ области, которые
служат катодами, а другие - анодами.

• Для низкоуглеродистой стали в HCl на катодах выделяется h3, но через
раз может появиться ЕДИНАЯ коррозия, потому что анодные и катодные площади меняются со ВРЕМЕНИ.

Термин
Электродные потенциалы могут быть объединены ______ для получения потенциала ячейки
:

Ecell = Ecathode - Eanode

• Не все металлы окисляются с образованием ____ с одинаковой степенью легкости
, что приводит к разным потенциалам для разных металлов реакции

Определение
Электродные потенциалы могут быть скомбинированы АЛГЕБРАИЧЕСКИ для получения потенциала ячейки:

Ecell = Ecathode - Eanode

• Не все металлы окисляются с образованием ИОНОВ с одинаковой степенью легкости, что приводит к различным потенциалам для различных металлических реакций

Клемма
Мы можем легко измерить разность потенциалов на
электрохимической ячейке, используя ______.
Определение
Мы можем легко измерить разность потенциалов на
электрохимической ячейке с помощью ВОЛЬТМЕТРА.
Клемма
Во внешней цепи ...
электронов течет от ____ до ____
течет от ____ до ____.
Определение
Во внешней цепи...

ЭЛЕКТРОНЫ текут от АНОДА к КАТОДУ

ТОК течет от КАТОДА к АНОДУ.

Клемма
Аноды имеют [больше / меньше] потенциал положительного электрода

Катоды имеют [больше / меньше] потенциал положительного электрода

Определение
Аноды имеют МЕНЬШЕ потенциал положительного электрода

Катоды имеют БОЛЬШЕ потенциал положительного электрода

Термин
Чтобы оценить стандартные электродные потенциалы в различных комбинациях электродов, удобно присвоить каждому электроду часть потенциала ячейки.

Это называется _____ потенциалом.

Эти _____ потенциалы должны соответствовать стандарту
, который традиционно является _____.

Определение
Чтобы оценить стандартные электродные потенциалы в различных комбинациях электродов, удобно назначить часть потенциала ячейки каждому электроду.

Это называется ПОЛОВИННЫМ потенциалом.

Эти ПОЛОВИННЫЕ потенциалы должны соответствовать стандарту
, который традиционно является СТАНДАРТНЫМ ПОТЕНЦИАЛОМ ВОДОРОДА (SHE).

Термин
____ - это древняя полуячейка, в которой газообразный водород барботируется над платиновым электродом:
2H + + 2 e- h3

• Этот электрод не очень практичен для использования в экспериментах
.

• Однако это стандарт, и в обратимом элементе потенциал между ним и любым электродом называется обратимым потенциалом этого электрода, E.

• Если эксплуатируется в стандартных условиях, то это
_____ _____ _____, Eo

Определение
SHE - это древняя полуячейка, в которой газообразный водород барботируется над платиновым электродом:
2H + + 2 e- h3

• Этот электрод не очень практичен для использования в экспериментах.

• Однако это стандарт, и в обратимом элементе потенциал между ним и любым электродом называется обратимым потенциалом этого электрода, E.

• При эксплуатации в стандартных условиях это СТАНДАРТНЫЙ ЭЛЕКТРОДНЫЙ ПОТЕНЦИАЛ, Eo

Условие
Поскольку любую реакцию можно записать как реакцию окисления или восстановления, по стандарту ее следует записать в _____
Определение
Так как любую реакцию можно записать как реакцию окисления или восстановления, по стандарту ее следует записать в REDUCTION
Срок действия
Стандартный водородный потенциал:

Два результата:

--_______ металл, металл - анод

- _______ металла - катод

Определение
Стандартный водородный потенциал:

Два результата:

- КОРРОЗИЯ металла, металл является анодом (отдавая электроны и ионы) Vmetal

- ЭЛЕКТРОРАСПРЕДЕЛЕНИЕ, металл является катодом (приобретает электроны и ионы). ) Vmetal> 0 (относительно Pt)

Vmetal = стандартный потенциал электрода

Срок действия
Металл с [меньше / больше] Vметалл корродирует
Определение
Металл с МЕНЬШЕМ V Металл коррозирует
Срок
Уменьшить Vcathod - Vanode с помощью...

увеличение молярности анода
уменьшение молярности катода
увеличение ТЕМПЕРАТУРА

Определение
Уменьшить Vкатод - Ванод на ...

увеличение молярности анода
уменьшение молярности катода
увеличение ТЕМПЕРАТУРЫ

Срок
• До сих пор мы в основном предполагали, что:
• Электрохимическая коррозия - единственный механизм износа
.
• Анодные и катодные реакции происходят на всей поверхности электрода
, причем места этих
реакций меняются местами на поверхности.
• Нет значительных макроскопических различий концентраций
в электролите вдоль поверхности металла
, и металл достаточно однороден.

• Эти допущения приводят к одному типу коррозии,
______ или ______ коррозии.

Определение
• До сих пор мы в основном предполагали, что:
• Электрохимическая коррозия является единственным механизмом износа
.
• Анодные и катодные реакции происходят на всей поверхности электрода
, причем места этих
реакций меняются местами на поверхности.
• Нет значительных макроскопических различий концентраций
в электролите вдоль поверхности металла
, и металл достаточно однороден.

• Эти допущения приводят к одному типу коррозии,
GENERAL или UNIFORM коррозии.

Условие
Другие формы коррозии зависят от отклонений от допущений, сделанных для общей / равномерной коррозии, которые могут быть вызваны:
• Конструкцией (макрогеометрия поверхности металла)
• Комбинацией металла и окружающая среда
• Состояние поверхности (особенно чистота и шероховатость)
• Прочие механизмы разрушения
Определение
Нет Q, просто подумайте, что это может быть важно

Другие формы коррозии зависят от отклонений от допущений, сделанных для общей / равномерной коррозии, которые могут быть вызваны:
• Конструкцией (макрогеометрия металлической поверхности)
• Сочетание металла и окружающей среды
• Состояние поверхности (особенно чистота и шероховатость)
• Прочие механизмы разрушения

Условие
Общая или равномерная коррозия

• По определению, этот тип воздействия распространяется даже на поверхность, что приводит к относительно равномерному уменьшению толщины.

• приводит к [наименьшей / наибольшей] потере массы материала.

• С точки зрения осмотра его легко различить до ___________.

• Его эффекты можно предсказать, проводя наблюдения во времени.

• Внутренняя коррозия трубопроводов или заглубленных металлических компонентов
может затруднить наблюдение.

- Коррозия протекает относительно равномерно по поверхности,
различных областей действуют как ____ и ____.

• Металлический компонент может быть погружен в воду (например,грамм. в воде) или подвержены воздействию влажного воздуха (например, вблизи водоема или влажного воздуха)
, обеспечивающего необходимый электролит для ионной проводимости катодных реагентов.

• Водная и атмосферная коррозия

.

Смотрите также