Чем отличается кристаллизация чистых металлов и сплавов


Особенности кристаллизации чистых металлов и сплавов

При кристаллизации чистых металлов может наблюдаться гладкий фронт кристаллизации при малых скоростях переохлаждения, металл обладает высокой пластичностью. При увеличении скорости охлаждения при кристаллизации чистых металлов возникает столбчатая структура при кристаллизации сплавов гладкий фронт как правило не наблюдается, а появляется при малых степенях переохлаждения ячеистая структура.
Границы между кристаллами, как правило, перенасыщены примесями, поэтому такая структура обладает самой низкой пластичностью в температурном интервале хрупкости.
При больших концентрационных переохлаждениях наблюдается дендритный вид структуры – лучшая пластичность.
Переход от одной структуры к другой в зависимости от концентрации примесей и от обобщённого критерия Ф.
Особенности кристаллизации чистых металлов и сплавов.
При кристаллизации чистых металлов может наблюдаться гладкий фронт кристаллизации при малых скоростях переохлаждения, металл обладает высокой пластичностью. При увеличении скорости охлаждения при кристаллизации чистых металлов возникает столбчатая структура при кристаллизации сплавов гладкий фронт как правило не наблюдается, а появляется при малых степенях переохлаждения ячеистая структура.
Границы между кристаллами, как правило, перенасыщены примесями, поэтому такая структура обладает самой низкой пластичностью в температурном интервале хрупкости.
При больших концентрационных переохлаждениях наблюдается дендритный вид структуры – лучшая пластичность.
Переход от одной структуры к другой в зависимости от концентрации примесей и от обобщённого критерия Ф.

2:27 (только Triple) объясняет, почему сплавы тверже чистых металлов

Сплавы тверже отдельных чистых металлов, из которых они сделаны.

В сплаве разные элементы имеют несколько разный размер атомов. Это нарушает обычную структуру решетки и затрудняет скольжение слоев ионов друг по другу.

.

МЕХАНИЧЕСКИЕ СВОЙСТВА МЕТАЛЛОВ И СПЛАВОВ

Механические свойства имеют первостепенное значение в более крупных промышленных применениях металлов, поэтому они требуют большого внимания при их изучении.

Прочность. - Прочность материала - это свойство сопротивления внешним нагрузкам или напряжениям без повреждения конструкции. Термин «предел прочности » относится к удельному напряжению (фунты на квадратный дюйм), развиваемому в материале в результате максимальной медленно прикладываемой нагрузки, которой материал может выдержать без разрушения при испытании на растяжение.Испытание на растяжение чаще всего применяется к металлам, потому что оно говорит об их свойствах гораздо больше, чем любое другое отдельное испытание. В металлургии о разрушении часто говорят как об отказе, разрыве или разрушении; Разрыв металла - это название, данное поверхности, на которой произошел разрыв.

Прочность металлов и сплавов зависит от двух факторов, а именно, прочности кристаллов, из которых они состоят, и прочности сцепления между этими кристаллами.Самое сильное известное вещество - это вольфрамовая проволока электрических ламп накаливания. Чистое железо непрочно, но когда сталь легирована углеродом для получения стали, она может быть прочнее любого из чистых металлов, кроме вольфрама.

Напряжение и деформация. - Напряжение - это сила внутри тела, которая сопротивляется деформации из-за приложенной извне нагрузки. Если эта нагрузка действует на поверхность единичной площади, это называется единичной силой, а сопротивление ей - единиц. Таким образом, количественно напряжение - это сила на единицу площади; на европейском континенте он выражается в килограммах на квадратный миллиметр, в Соединенных Штатах - фунтах на квадратный дюйм, а в Англии обычно используются длинные тонны на квадратный дюйм.

Когда внешняя сила действует на эластичный материал, материал деформируется, и деформация пропорциональна нагрузке. Это искажение или деформация составляет деформаций, и единичная деформация измеряется в Соединенных Штатах и ​​в Англии в дюймах на дюйм, тогда как в Европе она измеряется в сантиметрах на сантиметр. Единичная деформация - это отношение расстояний или длин.

Эластичность. - Любой материал, подверженный внешней нагрузке, деформирован или деформирован.Упруго напряженные материалы возвращаются к своим первоначальным размерам при снятии нагрузки, если она не слишком велика. Такое искажение или деформация пропорциональна величине нагрузки до определенной точки, но когда нагрузка слишком велика, материал постоянно деформируется, а при дальнейшем увеличении нагрузки до определенной точки материал разрушается. Свойство восстановления исходных размеров после снятия внешней нагрузки известно как эластичность .

Модуль упругости. - В пределах эластичности отношение напряжения к деформации известно как модуль упругости (т.е. мера упругости).

Модуль упругости выражает жесткость материала. Для стали и большинства металлов это постоянное свойство, на которое мало влияет термическая обработка, горячая или холодная обработка или фактический предел прочности металла. Их модули упругости показывают, что когда стержни из стали и алюминия одинакового размера подвергаются одинаковой нагрузке, возникающая в результате упругая деформация в алюминии будет почти в три раза больше, чем в стальном стержне.



Пропорциональный предел упругости. - Металлы обычно не эластичны во всем диапазоне нагрузок. Предел пропорциональности напряжения к деформации известен как предел пропорциональности . Предел упругости - это максимальное удельное напряжение, которое испытываемый образец будет выдерживать и все еще возвращаться к своим исходным размерам после снятия нагрузки. Предел пропорциональности и предел упругости в металлах очень близки друг к другу, настолько, что их часто путают, и теперь принято объединять их в один термин «Предел пропорциональной упругости». Это важное свойство, напряжение, которое нельзя превышать при проектировании.

Природа эластичности. - Эластичность металлического вещества является функцией сопротивления его атомов разделению, сжатию или вращению друг относительно друга и, таким образом, является фундаментальным свойством материала. Итак, эластичность демонстрируется как функция атомных сил. Это объясняет, почему модуль упругости прочной и хрупкой термически обработанной легированной стали точно такой же, как у сравнительно слабой и вязкой отожженной стали.

Предел текучести. - Это точка на кривой "напряжение-деформация", в которой напряжение выравнивается или фактически уменьшается при продолжении деформации. Этот термин строго применим только к малоуглеродистым сталям, так как характеристика, которая его определяет, не встречается в других металлах, легированных сталях или даже холоднодеформированных или нормализованных низкоуглеродистых сталях.

Максимальная сила. - Наибольшая нагрузка, которую выдерживает образец, деленная на исходную площадь поперечного сечения, называется пределом прочности на разрыв или пределом прочности детали.

Пластичность. - Пластичность - это способность металла постоянно деформироваться при растяжении без разрушения. В частности, этот термин обозначает емкость, которую нужно тянуть от проволоки большего диаметра к меньшему. Такая операция, очевидно, включает в себя как удлинение, так и уменьшение площади, и значения этих двух характеристик металла, определенные при испытании на растяжение, обычно принимаются в качестве меры пластичности металла.

Прочность. - Вязкость определяется как свойство поглощения значительной энергии до разрушения. Это мера общей способности материала поглощать энергию, включая энергию как упругой, так и пластической деформации при постепенно прикладываемой нагрузке. Одним из самых распространенных тестов на ударную вязкость является «испытание на удар», в котором измеряется энергия, поглощенная при разрушении образца при внезапном ударе.

Природа прочности. - Прочность металла определяется степенью скольжения, которое может происходить внутри кристаллов, не приводя к разрушению металла.Возможно, это результат попеременного проскальзывания и расклинивания каждой клиновидной кристаллографической плоскости, удерживаемой до приложения большего напряжения. Хрупкий металл или сплав либо не перестанет скользить после достижения упругой деформации, либо остановится только на короткое время перед разрушением. Очевидно, что последовательная остановка и проскальзывание вызовут деформацию; поэтому вязкие металлы и сплавы часто являются наиболее пластичными и пластичными.

Иногда кристаллы металла могут быть прочными, но границы кристаллов могут содержать примеси, так что наименьшая деформация кристаллической массы может вызвать растрескивание через хрупкий материал границ зерен.Это справедливо для стали, содержащей значительное количество фосфора, и меди, содержащей висмут.

Ковкость. - Ковкость - это свойство металла, которое допускает остаточную деформацию при сжатии без разрушения. В частности, это означает способность раскатывать или забивать тонкие листы. Свойство пластичности похоже, но не то же самое, что и пластичность, и разные металлы не обладают этими двумя свойствами в одинаковой степени: хотя свинец и олово относительно высоки в порядке пластичности, им не хватает необходимой прочности на разрыв. быть втянутым в тонкую проволоку.Большинство металлов обладают повышенной ковкостью и пластичностью при более высоких температурах. Например, железо и никель очень пластичны при ярко-красном огне (1000 ° C).

Хрупкость. - Хрупкость подразумевает внезапный отказ. Это свойство ломаться без предупреждения, то есть без видимой остаточной деформации. Это противоположность ударной вязкости в том смысле, что хрупкое тело имеет небольшое сопротивление разрыву после достижения предела упругости. Хрупкость противоположна пластичности в том смысле, что она предполагает разрыв без значительной деформации.Часто твердые металлы хрупкие, но эти термины не следует путать или использовать как синонимы.

Усталостный отказ. - Если металл подвергается частым повторяющимся нагрузкам, он в конечном итоге разорвется и выйдет из строя.

Чередование стресса приведет к неудаче быстрее, чем повторение стресса. Под «чередованием напряжений» подразумевается попеременное растяжение и сжатие в любом волокне. Разрушение металлов и сплавов при повторяющихся или переменных напряжениях, слишком малых, чтобы вызвать даже остаточную деформацию при статическом применении, называется усталостным разрушением .

Коррозионная усталость. - Если элемент подвергается также воздействию коррозионных агентов, таких как влажная атмосфера или масло, не очищенное от кислоты, напряжение, необходимое для выхода из строя, намного ниже. Самые прочные стали не выдерживают усталости и коррозии при удельном напряжении волокна не более 24000 фунтов на квадратный дюйм, даже если их предел прочности может указывать на то, что они могут выдерживать гораздо более высокое напряжение. Интересно отметить, что удельное напряжение чрезвычайно прочной термически обработанной легированной стали, подверженной коррозионной усталости, будет не больше, чем у относительно слабой конструкционной стали.Очевидна важность защиты поверхностей усталостных элементов от коррозии с помощью цинкования, гальванизации и т. Д., Если и когда это возможно.

Твердость. - Качество твердости является сложным, и подробное исследование показало, что оно представляет собой комбинацию ряда физических и механических свойств. Его чаще определяют в терминах метода, используемого для его измерения, и обычно означает сопротивление вещества вдавливанию. Твердость также может быть определена с точки зрения устойчивости к царапинам и, таким образом, связана с износостойкостью.Термин твердость иногда используется для обозначения жесткости или состояния деформируемых изделий, поскольку твердость металла при вдавливании тесно связана с его пределом прочности при растяжении.

В инженерной практике сопротивление металла проникновению твердого инструмента для вдавливания обычно принимается как определяющее свойство твердости. Был разработан ряд стандартизированных испытательных машин и пенетраторов, наиболее распространенными из которых являются машины Бринелля, Роквелла и Виккерса.

В испытании Бринелля шарик из закаленной стали диаметром 10 мм вдавливается в поверхность испытываемого материала под нагрузкой 500 или 3000 кг и измеряется площадь вдавливания.Затем твердость по Бринеллю выражается как отношение приложенной нагрузки к площади слепка.

В тестах Роквелла используется несколько различных масштабов тестирования с использованием различных пенетраторов и нагрузок. Наиболее часто используемые шкалы - это шкала «C», в которой используется алмазный конусный пенетратор при основной нагрузке 150 кг, и шкала «B», в которой используется закаленный стальной шар диаметром 1/16 дюйма при основной нагрузке 100 кг. кг. В этом испытании в качестве меры твердости принимается разница глубины проникновения между глубиной проникновения малой нагрузки в 10 кг и приложенной основной нагрузкой.

В тесте Виккерса используется квадратный индентор в виде ромбовидной пирамиды, который может быть нагружен от 1 до 120 кг. Как и в тесте Бринелля, твердость выражается через приложенную нагрузку, деленную на площадь поверхности пирамидального отпечатка.

Тест Бринелля обычно используется только для довольно толстых срезов, таких как прутки и поковки, в то время как тест Роквелла обычно используется как для толстых, так и для тонких срезов, таких как полосы и трубки. Поверхностный Роквелл можно использовать для деталей толщиной до 0.010 дюймов. Тестер Виккерса чаще всего используется как лабораторный прибор для очень точных измерений твердости, а не как инструмент производственного контроля.

Склероскоп Шора измеряет упругость, а не твердость, хотя они взаимосвязаны. Склероскоп измеряет отскок падающего молотка от испытательной поверхности, и число твердости выражается как высота отскока в терминах максимального отскока от полностью закаленной высокоуглеродистой стали.

Природа твердости и мягкости. - Сопротивление металла проникновению другим телом, очевидно, частично зависит от силы сопротивления его межатомных связей. На это указывает почти точная параллель порядка твердости металлов и их модулей упругости. Единственное известное исключение - это соотношение магния и алюминия. Магний поцарапает алюминий, хотя его модуль упругости и средняя прочность межатомных связей меньше.


Дата: 24.12.2015; просмотр: 1237


.

Введение в неорганическую химию / металлы и сплавы: структура, связь, электронные и магнитные свойства

Из Wikibooks, открытые книги для открытого мира

Перейти к навигации Перейти к поиску
Ищите Введение в неорганическую химию / металлы и сплавы: структура, связь, электронные и магнитные свойства в одном из родственных проектов Wikibooks: Викиучебник не имеет страницы с таким точным названием.

Другие причины, по которым это сообщение может отображаться:

  • Если страница была создана здесь недавно, она может быть еще не видна из-за задержки обновления базы данных; подождите несколько минут и попробуйте функцию очистки.
  • Заголовки в Викиучебниках чувствительны к регистру , кроме первого символа; пожалуйста, проверьте альтернативные заглавные буквы и подумайте о добавлении перенаправления здесь к правильному заголовку.
  • Если страница была удалена, проверьте журнал удалений и просмотрите политику удаления.
.

Что такое металлические сплавы? | MATSE 81: Материалы в современном мире

Щелкните здесь, чтобы просмотреть стенограмму видеоролика «Свойства вещества: сплавы и их свойства».

В этом видео мы видим, как разные металлы соединяются вместе, образуя сплавы, которые по-прежнему сохраняют металлические свойства исходных металлов, но обычно более прочные. Типичным примером атомов металлов является наличие всего нескольких электронов во внешних оболочках. Это означает, что даже когда они связываются, в этой валентной оболочке всегда остается место для большего количества электронов.Каждый атом металла может связываться с 12 другими атомами в плотноупакованной решетке. Посмотрите на красный атом. Он окружен шестью в своей плоскости, тремя сверху и тремя снизу.

Возможны и менее компактные кристаллические структуры. Например, это расположение, где каждый атом связан с восемью другими. Поскольку все еще недостаточно электронов, чтобы завершить внешнюю оболочку любого из атомов, электроны могут легко перемещаться от одного атома к другому, делая металлы хорошими проводниками как электричества, так и тепла.А поскольку электроны не локализованы в фиксированных связях, атомы могут скользить мимо друг друга, делая их пластичными, позволяя металлу изменять форму. Это также означает, что когда вы пытаетесь взаимодействовать с металлами вместе, атомы обычно просто смешиваются в решетке, образуя металлические связи друг с другом, без фиксированных пропорций и случайным образом распределенных. Эти структуры называются сплавами. Сравните это с соединениями между металлами и неметаллами или между неметаллическими элементами, где пропорции каждого элемента фиксированы.

Самым древним примером сплава, возможно, является то, как бронза пришла на смену меди в древних человеческих сообществах Европы около 6000 лет назад. В конце каменного века топоры стали делать из чистой меди, но они были довольно мягкими. Когда для изготовления бронзы добавлялось небольшое количество олова, получался топор, который был вдвое тяжелее и работал хорошо. Наступил бронзовый век. Атомы в металлической решетке удерживаются ненаправленными связями, что-то вроде моря свободных электронов, как мы уже говорили, позволяя атомам скользить мимо друг друга, все еще соприкасаясь, что делает металлы относительно легко плавящимися и изгибающимися, но трудно испаряемыми.Когда металлы меняют форму, атомы фактически скользят друг по другу вот так. Однако этот процесс не происходит сразу, а постепенно напоминает попытку сдвинуть ковер, вставив в него камень.

Вот как это происходит в металле. Вы видите, как скольжение легко перемещается по одному атому за раз, когда в решетке есть дислокация. Именно это легкое движение атомов в кристаллической решетке делает самый чистый металл мягким. Теперь поместите в решетку атом большего или меньшего размера, и это легкое движение дислокации будет заблокировано.Посмотрите, как более крупный атом стабилизирует дислокацию, которая не продвинется дальше, если вы не приложите большую силу, что означает, что сплав сложнее согнуть.

В завершение рассмотрим некоторые известные сплавы. Бронза, три четверти меди, четверть олова, для скульптур, лодочного оборудования, винтов и решеток. Латунь 70 процентов меди, 30 процентов цинка. Музыкальные инструменты, монеты, дверные молотки. Углеродистая сталь 99 процентов железа и до одного процента углерода. Строительство зданий, инструменты, автомобильные кузова, рельсы для машин и т. Д.нержавеющая сталь с содержанием хрома около 18 процентов и никеля на восемь процентов. Используется для посуды, кухонной посуды, хирургических инструментов и т. Д. Алюминиевые сплавы для самолетов содержат несколько процентов меди или других металлов. Амальгама - это ртуть с серебром и другими металлами. Когда-то использовался для пломбирования зубов. Свинцовый припой и олово для соединения электрических проводов и компонентов. Очень легко плавится. Золото обычно представляет собой сплав, содержащий другой металл, например серебро, для повышения твердости. Количество каратов k определяет, сколько массовых частей чистого золота содержится в 24 частях сплава.

.

Смотрите также