Чем объясняется высокая электропроводность металлов


Высокая электропроводность - металл - Большая Энциклопедия Нефти и Газа, статья, страница 3

Высокая электропроводность - металл

Cтраница 3

К металлам относятся вещества, обладающие хорошей электрической проводимостью с удельным сопротивлением р 10 - 7 - - 10 - 8 ом-м, высокой теплопроводностью, вязкостью, ковкостью. Высокая электропроводность металлов объясняется тем, что валентные электроны принадлежат не отдельным атомам, а всей кристаллической решетке в целом. Эти электроны называют свободными.  [31]

Приведенные положения позволяют объяснить характерные свойства металлов. Высокая электропроводность металлов объясняется присутствием в них свободных электронов, которые под влиянием даже небольшой разности потенциалов перемещаются от отрицательного полюса к положительному. С повышением температуры усиливаются колебания ионов ( атомов), что затрудняет прямолинейное движение электронов, в результате чего электросопротивление возрастает. При низких температурах колебательное движение ионов ( атомов) сильно уменьшается и электропроводность резко возрастает. Около абсолютного нуля сопротивление многих металлов практически отсутствует. Высокая теплопроводность металлов обусловливается как большой подвижностью свободных электронов, так и колебательным движением ионов ( атомов), вследствие чего происходит быстрое выравнивание температуры в массе металла.  [32]

Приведенные положения позволяют объяснить характерные свойства металлов. Высокая электропроводность металлов объясняется присутствием в них свободных электронов, которые перемещаются в потенциальном поле решетки. С повышением темпера гуры усиливаются колебания ионов ( атомов), образуются вакансии и нарушается правильная периодичность потенциального поля, что затрудняет движение электронов, в результате чего электросопротивление возрастает. При низких температурах колебательное движение ионов ( атомов) сильно уменьшается и электропроводность возрастает. У некоторых металлов в результате образования пар электронов, движущихся упорядоченно при очень низких температурах ( 20К), электропроводность обращается в бесконечное и, - явление сверхпроводимости. Высокая теплопроводность металлов обусловливается большой подвижностью свободных электронов и в меньшей степени колебательным движением ионов.  [33]

В отличие от ионных и ковалентных соединений металлы отличаются высокой электропроводностью и теплопроводностью. Высокая электропроводность металлов указывает на то, что электроны свободно могут передвигаться во всем его объеме. Иными словами металл можно рассматривать как кристалл, в узлах решетки которого расположены ионы, связанные электронами, находящимися в общем пользовании, т.е. в металлах имеет место сильно нелокализованная химическая связь. Совокупность электронов, обеспечивающих эту связь, называют электронным газом.  [34]

Все металлы обладают высокой электропроводностью. Причина высокой электропроводности металлов заключается в слабой связи электронного газа с положительно заряженными ионами. Достаточно приложить небольшую разность электрических потенциалов к концам металлического тела, чтобы вызвать перемещение электронного газа - электрический ток.  [36]

Положительно заряженные атомы валентная связи), окружены как бы электронным газом, который может свободно передвигаться. Этим объясняется высокая электропроводность металлов.  [37]

Свободные электроны перемещаются по объему металла, как бы не замечая ионов, находящихся в узлах кристаллической решетки. Этим и объясняется высокая электропроводность металлов.  [38]

За счет обобществления электронов атомы становятся положительно заряженными ионами, которые обтекаются электронным газом, что и обусловливает связи между атомами ( ионами) в кристаллической решетке. Наличие электронного газа объясняет, в частности, высокую электропроводность металлов.  [39]

Металлическая связь возникает при образовании из внешних ( относительно слабо связанных с ядром) электронов отрицательно заряженного электронного газа, в результате чего положительно заряженные ионы создают плотную, но пластичную кристаллическую решетку. Электроны, свободно перемещаясь между атомами, обеспечивают высокую электропроводность металлов.  [40]

Металлическая связь осуществляется путем образован

кристалл | Определение, типы, структура и факты

Классификация

Определение твердого тела кажется очевидным; твердое тело обычно считается твердым и твердым. Однако при рассмотрении определение становится менее однозначным. К примеру, кубик масла становится твердым после хранения в холодильнике и явно твердый. После того, как он оставался на кухонном столе в течение дня, тот же кубик становится довольно мягким, и неясно, следует ли считать масло твердым.Многие кристаллы ведут себя как масло в том смысле, что они твердые при низких температурах, но мягкие при более высоких. Их называют твердыми веществами при всех температурах ниже их точки плавления. Возможное определение твердого тела - это объект, который сохраняет свою форму, если его не трогать. Актуальный вопрос заключается в том, как долго объект сохраняет свою форму. Высоковязкая жидкость сохраняет форму час, но не год. Твердое тело должно дольше сохранять свою форму.

Основные единицы твердых тел

Основные единицы твердых тел - это атомы или атомы, которые объединились в молекулы.Электроны атома движутся по орбитам, которые образуют оболочку вокруг ядра. Оболочки заполняются в систематическом порядке, при этом каждая оболочка вмещает только небольшое количество электронов. У разных атомов разное количество электронов, которые распределены в характерной электронной структуре заполненных и частично заполненных оболочек. Расположение электронов в атоме определяет его химические свойства. Свойства твердых тел обычно можно предсказать на основе свойств составляющих их атомов и молекул, и поэтому различные структуры оболочки атомов ответственны за разнообразие твердых тел.

Все занятые оболочки атома аргона (Ar), например, заполнены, в результате чего атом имеет сферическую форму. В твердом аргоне атомы расположены в соответствии с плотнейшей упаковкой этих сфер. Атом железа (Fe), напротив, имеет одну электронную оболочку, которая заполнена лишь частично, что придает атому чистый магнитный момент. Таким образом, кристаллическое железо - это магнит. Ковалентная связь между двумя атомами углерода (C) - самая прочная связь в природе. Эта прочная связь делает алмаз самым твердым.

Получите эксклюзивный доступ к контенту из нашего первого издания 1768 с вашей подпиской. Подпишитесь сегодня

Твердое тело является кристаллическим, если оно имеет дальний порядок. Как только положение атома и его соседей известно в одной точке, положение каждого атома известно точно во всем кристалле. В большинстве жидкостей отсутствует дальний порядок, хотя во многих есть ближний порядок. Ближний радиус действия определяется как первые или вторые ближайшие соседи атома. Во многих жидкостях атомы первых соседей расположены в той же структуре, что и в соответствующей твердой фазе.Однако на расстояниях, удаленных на много атомов, положения атомов становятся некоррелированными. Эти жидкости, такие как вода, имеют ближний порядок, но не имеют дальнего порядка. Некоторые жидкости могут иметь ближний порядок в одном направлении и дальний порядок в другом; эти особые вещества называются жидкими кристаллами. Твердые кристаллы имеют как ближний, так и дальний порядок.

Твердые тела, которые имеют ближний порядок, но не имеют дальнего порядка, называются аморфными. Практически любой материал можно сделать аморфным путем быстрого затвердевания из расплава (расплавленное состояние).Это состояние нестабильно, и твердое вещество со временем кристаллизуется. Если временной шкалой кристаллизации являются годы, то аморфное состояние кажется стабильным. Стекла - это пример аморфного твердого тела. В кристаллическом кремнии (Si) каждый атом тетраэдрически связан с четырьмя соседями. В аморфном кремнии (a-Si) такой же ближний порядок существует, но направления связей меняются на расстояниях дальше от любого атома. Аморфный кремний - это разновидность стекла. Квазикристаллы - это еще один тип твердых тел, в которых отсутствует дальний порядок.

Большинство твердых материалов, встречающихся в природе, существуют в поликристаллической форме, а не в виде монокристалла. На самом деле они состоят из миллионов зерен (мелких кристаллов), упакованных вместе, чтобы заполнить все пространство. Каждое отдельное зерно имеет другую ориентацию, чем его соседи. Хотя дальний порядок существует внутри одного зерна, на границе между зернами он меняет направление. Типичный кусок железа или меди (Cu) поликристаллический. Монокристаллы металлов мягкие и податливые, а поликристаллические металлы тверже и прочнее и более полезны в промышленности.Большинство поликристаллических материалов можно превратить в крупные монокристаллы после длительной термической обработки. Раньше кузнецы нагревали кусок металла, чтобы сделать его пластичным: тепло заставляет несколько крупинок увеличиваться в размерах за счет включения более мелких. Кузнецы сгибали размягченный металл, придавая ему форму, а затем некоторое время толкали его; удары сделают его снова поликристаллическим, увеличивая его прочность.

Категории кристаллов

Кристаллы классифицируются по общим категориям, таким как изоляторы, металлы, полупроводники и молекулярные твердые тела.Монокристалл изолятора обычно прозрачный и напоминает кусок стекла. Металлы блестят, если они не заржавели. Полупроводники иногда блестят, а иногда прозрачны, но никогда не ржавеют. Многие кристаллы можно отнести к одному типу твердых тел, тогда как другие имеют промежуточное поведение. Сульфид кадмия (CdS) может быть получен в чистом виде и является отличным изолятором; когда в сульфид кадмия добавляются примеси, он становится интересным полупроводником. Висмут (Bi) кажется металлом, но количество электронов, доступных для электропроводности, такое же, как и в полупроводниках.На самом деле висмут называют полуметаллом. Молекулярные твердые вещества обычно представляют собой кристаллы, образованные из молекул или полимеров. Они могут быть изолирующими, полупроводниковыми или металлическими, в зависимости от типа молекул в кристалле. Постоянно синтезируются новые молекулы, и многие из них превращаются в кристаллы. Количество разных кристаллов огромно.

.

% PDF-1.4 % 1 0 obj > endobj 2 0 obj > endobj 3 0 obj > поток application / pdfiText 2.1.6, автор: 1T3XT2012-09-20T12: 03: 41-07: 002012-09-20T12: 06: 02-07: 00Documill Publishor 6.3.12, автор: Documill (http://www.documill.com/) конечный поток endobj 4 0 obj > endobj 7 0 объект > endobj 10 0 obj > поток xXK6 и.9} Vhd ~ o1fS / hO5 ~ + 5z ߳7 h5

.

Почему металлы так хорошо проводят тепло и электричество?

Структура металлов

Структуры чистых металлов описать просто, поскольку атомы, образующие эти металлы, можно рассматривать как идентичные совершенные сферы. Более конкретно, металлическая структура состоит из «выровненных положительных ионов» (катионов) в «море» делокализованных электронов. Это означает, что электроны могут свободно перемещаться по структуре и обуславливают такие свойства, как проводимость.

Какие бывают виды облигаций?

Ковалентные облигации

Ковалентная связь - это связь, которая образуется, когда два атома разделяют электроны. Примерами соединений с ковалентными связями являются вода, сахар и диоксид углерода.

Ионные связи

Ионная связь - это полный перенос валентных электронов между металлом и неметаллом. В результате возникают два противоположно заряженных иона, которые притягиваются друг к другу.В ионных связях металл теряет электроны, чтобы стать положительно заряженным катионом, тогда как неметалл принимает эти электроны, чтобы стать отрицательно заряженным анионом. Примером ионной связи может быть соль (NaCl).

Металлические облигации

Металлическая связь - это результат электростатической силы притяжения, которая возникает между электронами проводимости (в форме электронного облака делокализованных электронов) и положительно заряженными ионами металлов.Это можно описать как распределение свободных электронов между решеткой положительно заряженных ионов (катионов). Металлическое соединение определяет многие физические свойства металлов, такие как прочность, пластичность, термическое и электрическое сопротивление и проводимость, непрозрачность и блеск.

Делокализованные движущиеся электроны в металлах -

Это свободное движение электронов в металлах, которое придает им проводимость.

Электропроводность

Металлы содержат свободно движущиеся делокализованные электроны.Когда прикладывается электрическое напряжение, электрическое поле внутри металла вызывает движение электронов, заставляя их перемещаться от одного конца к другому концу проводника. Электроны будут двигаться в положительную сторону.

Электроны текут к положительному выводу

Теплопроводность

Металл хорошо проводит тепло.Проводимость возникает, когда вещество нагревается, частицы получают больше энергии и больше вибрируют. Затем эти молекулы сталкиваются с соседними частицами и передают им часть своей энергии. Затем это продолжается и передает энергию от горячего конца к более холодному концу вещества.

Почему металлы так хорошо проводят тепло?

Электроны в металле - это делокализованные электроны и свободно движущиеся электроны, поэтому, когда они набирают энергию (тепло), они вибрируют быстрее и могут перемещаться, это означает, что они могут быстрее передавать энергию.

Какие металлы проводят лучше всего?

Вверху: Электронные оболочки Золото (au), Серебро (Ag), Медь (Cu) и Цинк (Zn). По логике можно было бы подумать, что Золото - лучший проводник, имеющий единственный s-орбитальный электрон в последней оболочке (диаграмма выше)... так почему серебро и медь на самом деле лучше (см. таблицу ниже).

Электропроводность металлов

> С / м

Серебро 6,30 × 10 7
Медь 5,96 × 10 7
Золото 4.10 × 10 7
Алюминий 3,50 × 10 7
цинк 1,69 × 10 7

Серебро имеет больший атомный радиус (160 мкм), чем золото (135 мкм), несмотря на то, что в золоте больше электронов, чем в серебре! Причину этого см. В комментарии ниже.

Примечание: Серебро является лучшим проводником, чем золото, но золото более желательно, потому что оно не подвержено коррозии.(Медь является наиболее распространенной, потому что она наиболее экономична) Ответ немного сложен, и мы размещаем здесь один из лучших ответов, которые мы видели для тех, кто знаком с материалом.

"Серебро находится в середине переходных металлов примерно на 1/2 пути между благородными газами и щелочными металлами. В столбце 11 периодической таблицы все эти элементы (медь, серебро и золото) имеют единичный s -орбитальный электрон электрон внешней оболочки (платина также, в столбце 10).


Орбитальная структура электронов этих элементов не имеет особого сродства приобретать или терять электрон по отношению к более тяжелым или легким благородным газам, потому что они находятся на полпути между ними. В общем, это означает, что не требуется много энергии, чтобы временно сбить электрон или добавить его. Удельное сродство к электрону и потенциалы ионизации варьируются, и что касается проводимости, наличие относительно низких энергий для этих двух критериев в некоторой степени важно.

Если бы это были единственные критерии, то золото было бы лучшим проводником, чем серебро, но у золота есть дополнительные 14 f-орбитальных электронов под 10 d-орбитальными электронами и единственным s-орбитальным электроном. 14 f-электронов связаны с дополнительными атомами в ряду актинидов. С 14 дополнительными электронами, которые, по-видимому, выталкивают d- и s-электроны, можно подумать, что s-электрон просто «созрел» для проводимости (почти не требовалось энергии, чтобы оттолкнуть его), но НЕТ. Электроны на f-орбите упакованы таким образом, что это приводит к тому, что атомный радиус золота на самом деле МЕНЬШЕ, чем атомный радиус серебра - не намного, но он меньше. Меньший радиус означает большую силу со стороны ядра на внешние электроны, поэтому серебро побеждает в «соревновании» проводимости. Помните, сила электрического заряда обратно пропорциональна квадрату расстояния. Чем ближе 2 заряда вместе, тем выше сила между ними.

И медь, и платина имеют еще меньший диаметр; следовательно, большее притяжение от ядра, следовательно, больше энергии, чтобы сбить одинокий s-электрон, следовательно, более низкая проводимость.

Другие элементы с единственным s-орбитальным электроном, находящимся там, «созревшим для того, чтобы появился сборщик проводимости», также имеют меньшие атомные радиусы (молибден, ниобий, хром, рутений, родий), чем серебро.

Таким образом, именно то место, где оно находится, то место, где «мать-природа» поместила серебро в периодической таблице, определяет его превосходную проводимость ».

Источник из фунтов101 Yahoo

ВЫБОР ИСТОЧНИКОВ И ЧИТАТЕЛЕЙ -

Структура и физические свойства металлов

Почему одни металлы проводят тепло лучше, чем другие?

Как передается тепло?

Теплопроводность металлов

.

% PDF-1.4 % 724 0 объект > endobj xref 724 132 0000000016 00000 н. 0000005569 00000 н. 0000006148 00000 п. 0000006857 00000 н. 0000007157 00000 н. 0000007305 00000 н. 0000007465 00000 н. 0000007613 00000 н. 0000007775 00000 н. 0000007924 00000 н. 0000008086 00000 н. 0000008234 00000 н. 0000008396 00000 н. 0000008544 00000 н. 0000008706 00000 н. 0000008854 00000 н. 0000009015 00000 н. 0000009164 00000 п. 0000009325 00000 н. 0000009473 00000 н. 0000009635 00000 н. 0000009781 00000 п. 0000009943 00000 н. 0000010091 00000 п. 0000010253 00000 п. 0000010400 00000 п. 0000010562 00000 п. 0000010710 00000 п. 0000010872 00000 п. 0000011020 00000 п. 0000011182 00000 п. 0000011330 00000 п. 0000011493 00000 п. 0000011641 00000 п. 0000011804 00000 п. 0000011952 00000 п. 0000012114 00000 п. 0000012262 00000 п. 0000012424 00000 п. 0000012572 00000 п. 0000012875 00000 п. 0000013023 00000 п. 0000013186 00000 п. 0000013334 00000 п. 0000013497 00000 п. 0000013643 00000 п. 0000013806 00000 п. 0000013954 00000 п. 0000014116 00000 п. 0000014264 00000 п. 0000014426 00000 п. 0000014574 00000 п. 0000014736 00000 п. 0000014884 00000 п. 0000015046 00000 п. 0000015194 00000 п. 0000015356 00000 п. 0000015505 00000 п. 0000015667 00000 п. 0000015815 00000 п. 0000015977 00000 п. 0000016126 00000 п. 0000016288 00000 п. 0000016436 00000 п. 0000016599 00000 п. 0000016747 00000 п. 0000016910 00000 п. 0000017058 00000 п. 0000017220 00000 н. 0000017368 00000 п. 0000017530 00000 п. 0000017678 00000 п. 0000017840 00000 п. 0000017987 00000 п. 0000018149 00000 п. 0000018296 00000 п. 0000018458 00000 п. 0000018605 00000 п. 0000018767 00000 п. 0000018914 00000 п. 0000020110 00000 п. 0000021301 00000 п. 0000021338 00000 п. 0000021441 00000 п. 0000021919 00000 п. 0000026184 00000 п. 0000026856 00000 п. 0000027065 00000 п. 0000033317 00000 п. 0000034488 00000 п. 0000035116 00000 п. 0000035332 00000 п. 0000036848 00000 н. 0000038166 00000 п. 0000039362 00000 п. 0000040342 00000 п. 0000040556 00000 п. 0000041063 00000 п. 0000044161 00000 п. 0000044374 00000 п. 0000044960 00000 п. 0000046264 00000 н. 0000047424 00000 п. 0000047643 00000 п. 0000048592 00000 п. 0000049712 00000 п. 0000050990 00000 н. 0000052301 00000 п. 0000053293 00000 п. 0000055962 00000 п. 0000061943 00000 п. 0000069219 00000 п. 0000069274 00000 п. 0000069311 00000 п. 0000071999 00000 п. 0000072071 00000 п. 0000072295 00000 п. 0000072501 00000 п. 0000072611 00000 п. 0000072770 00000 п. 0000072937 00000 п. 0000073106 00000 п. 0000073253 00000 п. 0000073424 00000 п. 0000073565 00000 п. 0000073776 00000 п. 0000073969 00000 п. 0000074144 00000 п. 0000074327 00000 п. 0000074507 00000 п. 0000074659 00000 п. 0000002936 00000 н. трейлер ] / Назад 1589332 >> startxref 0 %% EOF 855 0 объект > поток h ެ WyTSW a1, TM

.

Смотрите также