Чем обусловлены физические свойства металлов


Свойства металлов: химические, физические, технологические

Химические свойства металлов
  • Физические свойства металлов

  • Механические свойства металлов

  • Технологические свойства металлов

  • Интересные факты о металлах

  • Металлы, видео
  • Не секрет, что все вещества в природе делятся на три состояния: твердые, жидкие и газообразные. А твердые вещества в свою очередь делятся на металлы и неметаллы, разделение это нашло свое отображение и в таблице химических элементов великого химика Д. И. Менделеева. Наша сегодняшняя статья о металлах, занимающих важное место, как в химии, так и во многих других сферах нашей жизни.

    Химические свойства металлов

    Все мы, так или иначе, но сталкиваемся с химией в нашей повседневной жизни. Например, во время приготовления еды, растворение поваренной соли в воде является простейшей химической реакцией. Вступают в разнообразные химические реакции и металлы, а их способность реагировать с другими веществами это и есть их химические свойства.

    Среди основных химических свойств или качеств металлов можно выделить их окисляемость и коррозийную стойкость. Реагируя с кислородом, металлы образуют пленку, то есть проявляют окисляемость.

    Аналогичным образом происходит и коррозия металлов – их медленное разрушение по причине химического или электрохимического взаимодействия. Способность металлов противостоять коррозии называется их коррозийной стойкостью.

    Физические свойства металлов

    Среди основных общих физических свойств металлов можно выделить:

    • Плавление.
    • Плотность.
    • Теплопроводность.
    • Тепловое расширение.
    • Электропроводность.

    Важным физическим параметром металла является его плотность или удельный вес. Что это такое? Плотность металла – это количество вещества, которое содержится в единице объема материала. Чем меньше плотность, тем металл более легкий. Легкими металлами являются: алюминий, магний, титан, олово. К тяжелым относятся такие металлы как хром, марганец, железо, кобальт, олово, вольфрам и т. д. (в целом их имеется более 40 видов).

    Способность металла переходить из твердого состояния в жидкое, именуется плавлением. Разные металлы имеют разные температуры плавления.

    Скорость, с которой в металле проводится тепло при нагревании, называется теплопроводностью металла. И по сравнению с другими материалами все металлы отличаются высокой теплопроводностью, говоря по-простому, они быстро нагреваются.

    Помимо теплопроводности все металлы проводят электрический ток, правда, некоторые делают это лучше, а некоторые хуже (это зависит от строения кристаллической решетки того или иного металла). Способность металла проводить электрический ток называется электропроводностью. Металлы, обладающие отличной электропроводностью, это золото, алюминий и железо, именно поэтому их часто используют в электротехнической промышленности и приборостроении.

    Механические свойства металлов

    Основными механическими свойствами металлов является их твердость, упругость, прочность, вязкость и пластичность.

    При соприкосновении двух металлов могут образоваться микро вмятины, но более твердый металл способен сильнее противостоять ударам. Такая сопротивляемость поверхности металла ударам извне и есть его твердость.

    Чем же твердость металла отличается от его прочности. Прочность, это способность металла противостоять разрушению под действием каких-либо других внешних сил.

    Под упругостью металла понимается его способность возвращать первоначальную форму и размер, после того как нагрузка, вызвавшая деформацию металла устранена.

    Способность металла менять форму под внешним воздействием называется пластичностью.

    Технологические свойства металлов

    Технологические свойства металлов и сплавов важны в первую очередь при их производстве, так как от них зависит способность подвергаться различным видам обработки с целью создания разнообразных изделий.

    Среди основных технологических свойств можно выделить:

    • Ковкость.
    • Текучесть.
    • Свариваемость.
    • Прокаливаемость.
    • Обработку резанием.

    Под ковкостью понимается способность металла менять форму в нагретом и холодном состояниях. Ковкость метала, была открыта еще в глубокой древности, так кузнецы, занимающиеся обработкой металлических изделий, превращением их в мечи или орала (в зависимости от потребности) на протяжении многих веков и исторических эпох были одной из самых уважаемых и востребованных профессий.

    Способность двух металлических сплавов при нагревании соединяться друг с другом называют свариваемостью.

    Текучесть металла тоже очень важна, она определяет способность расплавленного метала растекаться по заготовленной форме.

    Свойство металла закаливаться называется прокаливаемостью.

    Интересные факты о металлах

    • Самым твердым металлом на Земле является хром. Этот голубовато-белый метал был открыт в 1766 году под Екатеринбургом.
    • И наоборот, самыми мягкими металлами являются алюминий, серебро и медь. Благодаря своей мягкости они нашли широкое применение в разных областях, например, в электроаппаратостроении.
    • Золото – которое на протяжении веков было самим драгоценным металлом имеет и еще одно любопытное свойство – это самый пластичный металл на Земле, обладающий к тому же отличной тягучестью и ковкостью. Также золото не окисляется при нормальной температуре (для этого его нужно нагреть до 100С), обладает высокой теплопроводностью и влагоустойчивостью. Наверняка все эти физические характеристики делают настоящее золото таким ценным.
    • Ртуть – уникальный металл, прежде всего тем, что он единственный из металлов, имеющий жидкую форму. Причем в природных условиях ртути в твердом виде не существует, так как ее температура плавления -38С, то есть в твердом состоянии она может существовать в местах, где просто таки очень холодно. А при комнатной температуре 18С ртуть начинает испаряться.
    • Вольфрам интересен тем, что это самый тугоплавкий металл в мире, чтобы он начал плавиться нужна температура 3420С. Именно по этой причине в электрических лампочках нити накаливания, принимающие основной тепловой удар, изготовлены из вольфрама.

    Металлы, видео

    И в завершение образовательное видео по теме нашей статьи.


    Автор: Павел Чайка, главный редактор журнала Познавайка

    При написании статьи старался сделать ее максимально интересной, полезной и качественной. Буду благодарен за любую обратную связь и конструктивную критику в виде комментариев к статье. Также Ваше пожелание/вопрос/предложение можете написать на мою почту [email protected] или в Фейсбук, с уважением автор.


    9.2: Металлы и неметаллы и их ионы

    За исключением водорода, все элементы, которые образуют положительные ионы, теряя электроны во время химических реакций, называются металлами. Таким образом, металлы являются электроположительными элементами с относительно низкими энергиями ионизации. Они отличаются ярким блеском, твердостью, способностью резонировать со звуком и отлично проводят тепло и электричество. В нормальных условиях металлы являются твердыми телами, за исключением ртути.

    Физические свойства металлов

    Металлы блестящие, пластичные, пластичные, хорошо проводят тепло и электричество.Другие свойства включают:

    • Состояние : Металлы представляют собой твердые вещества при комнатной температуре, за исключением ртути, которая находится в жидком состоянии при комнатной температуре (в жаркие дни галлий находится в жидком состоянии).
    • Блеск : Металлы обладают свойством отражать свет от своей поверхности и могут быть отполированы, например, золотом, серебром и медью.
    • Ковкость: Металлы обладают способностью противостоять ударам молотком и могут быть превращены в тонкие листы, известные как фольга.Например, кусок золота размером с кубик сахара можно растолочь в тонкий лист, которым будет покрыто футбольное поле.
    • Пластичность: Металлы можно втягивать в проволоку. Например, из 100 г серебра можно натянуть тонкую проволоку длиной около 200 метров.
    • Твердость: Все металлы твердые, кроме натрия и калия, которые мягкие и поддаются резке ножом.
    • Валентность: Металлы обычно имеют от 1 до 3 электронов на внешней оболочке их атомов.
    • Проводимость : Металлы являются хорошими проводниками, потому что у них есть свободные электроны. Серебро и медь - два лучших проводника тепла и электричества. Свинец - самый плохой проводник тепла. Висмут, ртуть и железо также являются плохими проводниками
    • Плотность : Металлы имеют высокую плотность и очень тяжелые. Иридий и осмий имеют самую высокую плотность, а литий - самую низкую.
    • Точки плавления и кипения : Металлы имеют высокие температуры плавления и кипения.Вольфрам имеет самые высокие температуры плавления и кипения, а ртуть - самые низкие. Натрий и калий также имеют низкие температуры плавления.

    Химические свойства металлов

    Металлы - это электроположительные элементы, которые обычно образуют основных или амфотерных оксидов с кислородом. Другие химические свойства включают:

    • Электроположительный характер : Металлы имеют тенденцию к низкой энергии ионизации, а обычно теряют электроны (т.е.е. окисляются ) когда они вступают в химические реакции реакции Обычно они не принимают электроны. Например:
      • Щелочные металлы всегда 1 + (теряют электрон в s подоболочке)
      • Щелочноземельные металлы всегда 2 + (теряют оба электрона в s подоболочке)
      • Ионы переходных металлов не следуют очевидной схеме, 2 + является обычным (теряют оба электрона в подоболочке s ), а также наблюдаются 1 + и 3 +

    \ [\ ce {Na ^ 0 \ rightarrow Na ^ + + e ^ {-}} \ label {1.{-}} \ label {1.3} \ nonumber \]

    Соединения металлов с неметаллами имеют тенденцию быть ионными по природе. Большинство оксидов металлов являются основными оксидами и растворяются в воде с образованием гидроксидов металлов :

    \ [\ ce {Na2O (s) + h3O (l) \ rightarrow 2NaOH (aq)} \ label {1.4} \ nonumber \]

    \ [\ ce {CaO (s) + h3O (l) \ rightarrow Ca (OH) 2 (aq)} \ label {1.5} \ nonumber \]

    Оксиды металлов проявляют свою химическую природу основную , реагируя с кислотами с образованием солей металла и воды:

    \ [\ ce {MgO (s) + HCl (водный) \ rightarrow MgCl2 (водный) + h3O (l)} \ label {1.{2 -} \), следовательно, \ (Al_2O_3 \).

    Пример \ (\ PageIndex {2} \)

    Вы ожидаете, что он будет твердым, жидким или газообразным при комнатной температуре?

    Решения

    Оксиды металлов обычно твердые при комнатной температуре

    Пример \ (\ PageIndex {3} \)

    Напишите вычисленное химическое уравнение реакции оксида алюминия с азотной кислотой:

    Решение

    Оксид металла + кислота -> соль + вода

    \ [\ ce {Al2O3 (s) + 6HNO3 (водный) \ rightarrow 2Al (NO3) 3 (водный) + 3h3O (l)} \ nonumber \]

    .

    Свойства металлов

    Подавляющее большинство простых веществ - металлы. Физические свойства металлов - это непрозрачность, специфический «металлический» блеск, высокая теплопроводность и электропроводность, пластичность. Именно благодаря этим свойствам металлы сыграли решающую роль в истории человечества.

    В чем причина того, что металлы обладают такими свойствами и чем они так отличаются от неметаллов? Периодический закон и теория строения атома объяснили структуру и свойства металлов.Оказалось, что металлические свойства элементов обусловлены электронной структурой их атомов.

    Металлы на внешних электронных оболочках имеют 1-4 электрона. Эти электроны подвижны, поскольку они слабо притягиваются ядром. Благодаря этому металлу все или некоторые внешние электроны легко сдаются, в результате чего образуются положительно заряженные ионы-катионы. Чем легче металлам терять электроны, тем они активнее и тем сильнее проявляются их металлические свойства.

    В атомах неметаллов на внешних электронных оболочках много электронов 4-8, за исключением водорода (1) и бора (3). Эти электроны сильно притягиваются ядром, поэтому оторвать их от атома очень сложно. Но атомы неметаллов могут присоединять лишние электроны и превращаться в отрицательно заряженные ионы - анионы.

    Все металлы, кроме жидкой ртути, в обычных условиях твердые и имеют кристаллическую структуру. Свойства металлов тесно связаны со структурой их кристаллов.В узлах кристаллической решетки размещаются атомы и ионы (катионы), а количество ионов и электронов в кристаллах варьируется от металла к кристаллу. Внешние электроны, поскольку они подвижны и слабо притягиваются ядрами, образуют так называемый «электронный газ», который «блуждает» между ионами в кристалле. «Электронный газ» принадлежит не отдельным ионам, а кристаллу в целом. Именно наличием таких подвижных электронов в кристаллической решетке металлов можно объяснить их высокую электрическую и теплопроводность.«Электронный газ» очень хорошо отражает свет (поэтому металлы непрозрачны и имеют характерный блеск), а также короткие радиоволны. Последнее свойство металлов - основа радара.

    Металлы можно подделывать, и их способность к растяжению объясняется скольжением (смещением) одних слоев ионов относительно других.

    Как уже отмечалось, чем легче металлам отдавать свои валентные электроны, тем они более активны и, следовательно, легче вступают в химические реакции.Более активные металлы вытесняют менее активные соединения из своих соединений. Кроме того, многие металлы вытесняют водород из некоторых кислот, а также из воды. Исходя из этого, все металлы могут быть организованы в так называемую последовательность действий или электрохимическую серию напряжений.

    Платиновые металлы, золото и серебро издавна называют благородными. Они химически довольно инертны и поэтому не вступают в реакцию с водой или со многими кислотами. Подобно драгоценным металлам, титан, цирконий, гафний, ниобий, тантал, молибден, вольфрам и рений, которые также являются химически пассивными, ведут себя.Они термостойкие и обладают замечательными механическими свойствами. Именно поэтому эти металлы и их сплавы играют огромную роль в современной авиации, ракетной технике и атомной энергетике.

    .

    МЕХАНИЧЕСКИЕ СВОЙСТВА МЕТАЛЛОВ И СПЛАВОВ

    Механические свойства имеют первостепенное значение в более крупных промышленных применениях металлов, поэтому они требуют большого внимания при их изучении.

    Прочность. - Прочность материала - это свойство сопротивления внешним нагрузкам или напряжениям без повреждения конструкции. Термин «предел прочности » относится к удельному напряжению (фунты на квадратный дюйм), развиваемому в материале в результате максимальной медленно прикладываемой нагрузки, которой материал может выдержать без разрушения при испытании на растяжение.Испытание на растяжение наиболее часто применяется к металлам, потому что оно говорит об их свойствах гораздо больше, чем любое другое отдельное испытание. В металлургии о разрушении часто говорят как об отказе, разрыве или разрушении; перелом металла - это название поверхности, на которой произошел разрыв.

    Прочность металлов и сплавов зависит от двух факторов, а именно, прочности кристаллов, из которых они состоят, и прочности сцепления между этими кристаллами.Самое сильное известное вещество - это вольфрамовая проволока электрических ламп накаливания. Чистое железо непрочно, но когда сталь легирована углеродом для получения стали, она может быть прочнее любого из чистых металлов, кроме вольфрама.

    Напряжение и деформация. - Напряжение - это сила внутри тела, которая сопротивляется деформации из-за приложенной извне нагрузки. Если эта нагрузка действует на поверхность единичной площади, это называется единичной силой, а сопротивление ей - единиц. Таким образом, количественно напряжение - это сила на единицу площади; на европейском континенте он выражается в килограммах на квадратный миллиметр, в Соединенных Штатах - фунтах на квадратный дюйм, а в Англии обычно используются длинные тонны на квадратный дюйм.

    Когда внешняя сила действует на эластичный материал, материал деформируется, и деформация пропорциональна нагрузке. Это искажение или деформация составляет деформаций, единиц деформации, измеряемой в США и Англии в дюймах на дюйм, а в Европе - в сантиметрах на сантиметр. Единичная деформация - это отношение расстояний или длин.

    Эластичность. - Любой материал, подверженный внешней нагрузке, деформирован или деформирован.Упруго напряженные материалы возвращаются к своим первоначальным размерам при снятии нагрузки, если она не слишком велика. Такое искажение или деформация пропорциональна величине нагрузки до определенной точки, но когда нагрузка слишком велика, материал постоянно деформируется, а при дальнейшем увеличении нагрузки до определенной точки материал разрушается. Свойство восстановления исходных размеров после снятия внешней нагрузки известно как эластичность .

    Модуль упругости. - В пределах эластичности отношение напряжения к деформации известно как модуль упругости (т.е. мера упругости).

    Модуль упругости выражает жесткость материала. Для стали и большинства металлов это постоянное свойство, на которое мало влияет термическая обработка, горячая или холодная обработка или фактический предел прочности металла. Их модули упругости показывают, что когда стержни из стали и алюминия одинакового размера подвергаются одинаковой нагрузке, возникающая в результате упругая деформация в алюминии будет почти в три раза больше, чем в стальном стержне.



    Пропорциональный предел упругости. - Металлы обычно не эластичны во всем диапазоне нагрузок. Предел пропорциональности напряжения к деформации известен как предел пропорциональности . Предел упругости - это максимальное удельное напряжение, которое испытываемый образец будет выдерживать и все еще возвращаться к своим исходным размерам после снятия нагрузки. Предел пропорциональности и предел упругости в металлах очень близки друг к другу, настолько, что их часто путают, и теперь принято объединять их в один термин «Предел пропорциональной упругости». Это важное свойство, напряжение, которое нельзя превышать при проектировании.

    Природа эластичности. - Эластичность металлического вещества является функцией сопротивления его атомов разделению, сжатию или вращению друг относительно друга и, таким образом, является фундаментальным свойством материала. Итак, эластичность демонстрируется как функция атомных сил. Это объясняет, почему модуль упругости прочной и хрупкой термообработанной легированной стали точно такой же, как у сравнительно слабой и вязкой отожженной стали.

    Предел текучести. - Это точка на кривой "напряжение-деформация", в которой напряжение выравнивается или фактически уменьшается при продолжении деформации. Этот термин строго применим только к малоуглеродистым сталям, поскольку определяющая его характеристика не встречается в других металлах, легированных сталях или даже холоднодеформированных или нормализованных низкоуглеродистых сталях.

    Максимальная сила. - Наибольшая нагрузка, которую выдерживает образец, деленная на первоначальную площадь поперечного сечения, называется пределом прочности на разрыв или пределом прочности детали.

    Пластичность. - Пластичность - это способность металла постоянно деформироваться при растяжении без разрушения. В частности, этот термин обозначает емкость, которую нужно тянуть от проволоки большего диаметра к меньшему. Такая операция, очевидно, включает в себя как удлинение, так и уменьшение площади, и значения этих двух характеристик металла, определенные при испытании на растяжение, обычно принимаются в качестве меры пластичности металла.

    Прочность. - Вязкость определяется как свойство поглощения значительной энергии до разрушения. Это мера общей способности материала поглощать энергию, включая энергию как упругой, так и пластической деформации при постепенно прикладываемой нагрузке. Одним из наиболее распространенных тестов на ударную вязкость является «испытание на удар», в котором измеряется энергия, поглощенная при разрушении образца при внезапном ударе.

    Природа прочности. - Прочность металла определяется степенью скольжения, которая может происходить внутри кристаллов, не приводя к разрушению металла.Возможно, это результат попеременного проскальзывания и расклинивания каждой клиновидной кристаллографической плоскости, удерживаемой до приложения большего напряжения. Хрупкий металл или сплав либо не перестанет скользить после достижения упругой деформации, либо остановится только на короткое время перед разрушением. Очевидно, что последовательная остановка и проскальзывание вызовут деформацию; поэтому вязкие металлы и сплавы часто являются наиболее пластичными и пластичными.

    Иногда кристаллы металла могут быть прочными, но границы кристаллов могут содержать примеси, так что наименьшая деформация кристаллической массы может вызвать растрескивание через хрупкий материал границ зерен.Это верно для стали, содержащей значительное количество фосфора, и для меди, содержащей висмут.

    Ковкость. - Ковкость - это свойство металла, которое допускает остаточную деформацию при сжатии без разрушения. В частности, это означает способность раскатывать или забивать тонкие листы. Свойство пластичности похоже, но не то же самое, что и пластичность, и разные металлы не обладают этими двумя свойствами в одинаковой степени: хотя свинец и олово относительно высоки в порядке пластичности, им не хватает необходимой прочности на разрыв. быть втянутым в тонкую проволоку.Большинство металлов обладают повышенной ковкостью и пластичностью при более высоких температурах. Например, железо и никель очень пластичны при ярко-красном огне (1000 ° C).

    Хрупкость. - Хрупкость подразумевает внезапный отказ. Это свойство ломаться без предупреждения, то есть без видимой остаточной деформации. Это противоположность ударной вязкости в том смысле, что хрупкое тело имеет небольшое сопротивление разрыву после достижения предела упругости. Хрупкость противоположна пластичности в том смысле, что она предполагает разрыв без значительной деформации.Часто твердые металлы являются хрупкими, но эти термины не следует путать или использовать как синонимы.

    Усталостный отказ. - Если металл подвергается частым повторяющимся нагрузкам, он в конечном итоге разорвется и выйдет из строя.

    Чередование стресса приведет к неудаче быстрее, чем повторение стресса. Под «чередованием напряжений» подразумевается попеременное растяжение и сжатие в любом волокне. Разрушение металлов и сплавов под действием повторяющихся или переменных напряжений, слишком малых, чтобы вызвать даже остаточную деформацию при статическом применении, называется усталостным разрушением .

    Коррозионная усталость. - Если элемент подвергается также воздействию коррозионных агентов, таких как влажная атмосфера или масло, не очищенное от кислоты, нагрузка, необходимая для выхода из строя, намного ниже. Самые прочные стали не выдерживают усталости и коррозии при удельном напряжении волокна не более 24000 фунтов на квадратный дюйм, даже если их предел прочности может указывать на то, что они могут выдерживать гораздо более высокое напряжение. Интересно отметить, что удельное напряжение чрезвычайно прочной термически обработанной легированной стали, подверженной коррозионной усталости, будет не больше, чем у относительно слабой конструкционной стали.Очевидна важность защиты поверхностей усталостных элементов от коррозии с помощью цинкования, гальванизации и т. Д., Если и когда это возможно.

    Твердость. - Качество твердости является сложным, и подробное исследование показало, что оно представляет собой комбинацию ряда физических и механических свойств. Его чаще определяют в терминах метода, используемого для его измерения, и обычно означает сопротивление вещества вдавливанию. Твердость также может быть определена с точки зрения устойчивости к царапинам и, таким образом, связана с износостойкостью.Термин твердость иногда используется для обозначения жесткости или состояния деформируемых изделий, поскольку твердость металла при вдавливании тесно связана с его пределом прочности при растяжении.

    В инженерной практике сопротивление металла проникновению твердым инструментом для вдавливания обычно считается определяющим свойством твердости. Был разработан ряд стандартизированных испытательных машин и пенетраторов, наиболее распространенными из которых являются машины Бринелля, Роквелла и Виккерса.

    При испытании Бринелля шарик из закаленной стали диаметром 10 мм вдавливается в поверхность испытуемого материала под нагрузкой 500 или 3000 кг и измеряется площадь вдавливания.Затем твердость по Бринеллю выражается как отношение приложенной нагрузки к площади слепка.

    В тестах Rockwell используется ряд различных масштабов тестирования с использованием различных пенетраторов и нагрузок. Чаще всего используются шкалы «C», в которых используется алмазный конусный пенетратор при основной нагрузке 150 кг, и шкала «B», в которой используется закаленный стальной шар диаметром 1/16 дюйма при основной нагрузке 100 кг. кг. В этом испытании разница глубины проникновения между глубиной проникновения небольшой нагрузки в 10 кг и приложенной основной нагрузкой принимается в качестве меры твердости.

    В испытании Виккерса используется квадратный индентор в форме ромбовидной пирамиды, который может быть нагружен от 1 до 120 кг. Как и в тесте Бринелля, твердость выражается через приложенную нагрузку, деленную на площадь поверхности пирамидального отпечатка.

    Тест Бринелля обычно используется только для довольно толстых срезов, таких как прутки и поковки, в то время как тест Роквелла обычно используется как для толстых, так и для тонких срезов, таких как полосы и трубки. Поверхностный Роквелл можно использовать для деталей толщиной до 0.010 дюймов. Тестер Виккерса чаще всего используется как лабораторный прибор для очень точных измерений твердости, а не как инструмент производственного контроля.

    Склероскоп Шора измеряет упругость, а не твердость, хотя они взаимосвязаны. Склероскоп измеряет отскок падающего молотка от испытательной поверхности, и число твердости выражается как высота отскока в терминах максимального отскока от полностью закаленной высокоуглеродистой стали.

    Природа твердости и мягкости. - Сопротивление металла проникновению другим телом, очевидно, частично зависит от силы сопротивления его межатомных связей. На это указывает почти точная параллель порядка твердости металлов и их модулей упругости. Единственное известное исключение - это соотношение магния и алюминия. Магний поцарапает алюминий, хотя его модуль упругости и средняя прочность межатомных связей меньше.


    Дата: 24.12.2015; просмотр: 1244


    .

    Каковы свойства материи? (с иллюстрациями)

    Свойства материи - это характеристики элементов, составляющих вселенную. Они включают в себя массу и объем, самые основные измерения физического объекта. Материя обычно делится на физические свойства, которые можно наблюдать без изменения объекта, и химические свойства, которые можно узнать только с помощью химических реакций. Кроме того, элементы образуют основные типы материи, перечисленные в соответствии с их атомарными свойствами.

    В периодической таблице элементов перечислены простейшие типы материи в мире.

    Масса - это одно из основных свойств материи, потому что она измеряет количество вещества внутри объекта, на которое могут действовать физические силы, такие как гравитация.Всякая материя имеет массу и, следовательно, занимает объем. Плотность - это мера массы, определяемая как количество массы, деленное на единицу объема. Плотность вещества зависит от его температуры и давления.

    Свойства материи зависят от заряда протонов, нейтронов и электронов каждого атома.

    Физические свойства материи можно наблюдать без изменения анализируемого объекта. Они различаются в зависимости от каждого элемента или соединения и включают, среди прочего, точки кипения, плавления и замерзания, а также плотность. Свойства природных объектов в повседневной жизни, такие как твердость алмазов или текучесть воды, являются физическими свойствами.Состояние - важное свойство материи: оно описывает различные конфигурации, которые имеет вещество при разной плотности, например, состояние воды как лед, жидкость и пар.

    Химические свойства вещества меняются после химической реакции, и поэтому их нельзя наблюдать без изменения самой материи.Химические изменения означают, что свойства по крайней мере одного из двух или более веществ изменились в результате их реакции. Обычно химические свойства включают реактивность, pH, токсичность и скорость реакции. Ржавчина железа во влажной среде - это химическое свойство.

    Материя состоит из атомов и состоящих из них молекул.Свойства материи в конечном итоге происходят от зарядов протонов, нейтронов и электронов, строительных блоков атомов. В периодической таблице элементов перечислены простейшие типы материи в мире. Число и заряд частиц в данном атоме определяют, какой это элемент и как он будет реагировать с другими.

    Материя обычно образует связи, с помощью которых отдельные атомы соединяются в молекулы.Связывающие свойства вещества зависят от числа и заряда электронов, а также заряда ядер в центре каждого атома. Большая часть вещества удерживается вместе связями, созданными за счет конфигурации электронов в пространствах между атомными ядрами, поэтому свойства связи определяют многие свойства веществ. Соединения материи можно классифицировать в зависимости от того, какие связи удерживают их атомы вместе и какие реакции будут разделять их обратно на составляющие элементы.

    Химические свойства вещества изменяются после химической реакции. .

    Смотрите также