Чем обуславливается реальная прочность металлов


Теоретическая и реальная прочность твердых тел. Роль дефектов и трещин

МЕХАНИЗМ РАЗРУШЕНИЯ КОНСТРУКЦИОННЫХ МАТЕРИАЛОВ ПРИ РАЗЛИЧНЫХ ВИДАХ МЕХАНИЧЕСКОГО ВОЗДЕЙСТВИЯ

Лекция N 2

Рассчи­танная прочность в отличие от найденной экспериментально назы­вается теоретической.

Теоретическая прочность зависит от природы сил взаимодейст­вия между частицами (ионная, ковалентная, металлическая связь и др.) и от структуры материала.

Например, Орован предложил формулу

где - свободная поверхностная энергия твердого тела;

Е - модуль упругости при растяжении;

х - равновесное межчастичное расстояние.

Более упрощенной является зависимость

Реальная прочность (техническая) твердых тел на два - три порядка меньше теоретической, так как в материале есть микротрещины различных размеров и ориентации. Трещины являются концентраторами напряжения, напряжение на их краях может быть во много раз больше среднего напряжения в сечение образца.

Если величина перена­пряжения () у вершины наиболее опасной трещины равна тео­ретической прочности (), то происходит быстрый рост трещины и образец разделяется на две части. Приложенное напря­жение при этом соответствует так называемой максимальной тех­нической прочности ().

Коэффициент концентрации напряжения в вершине микротрещины равен. Он зависит от формы и размеров трещины, ее ориентации по отношению к направлению растяжения. Поэтому максимальная техническая прочность не является константой материала.

Максимальную техническую прочность Гриффитс рас­считывал из условия: трещина растет только тогда, когда умень­шение упругой энергии в образце в процессе ее роста (за счет разгрузки материала вокруг растущей трещины) равно или боль­ше увеличения потенциальной энергии, происходящего при обра­зовании новых поверхностей разрыва. (По русски: прочность зависит от поверхностной энергии, когда образец рвется поверхностная (потенциальная) энергия увеличивается, а упругая энергия уменьшается. Когда Упр. Эн. Уменьшается сильнее чем увеличиваеться Пот. Эн. Образчу пиздец)


Формула Гриффитса. Изменение упругой энергии (ΔW) в образце в виде тонкой пластинки при образовании в ней трещины длиной (С), ориентированной перпендикулярно направ­лению растяжения, равно

,

где δ - толщина пластинки; μ - коэффициент Пуассона.

Изме­нение упругой энергии является отрицательной величиной. По­верхностная энергия трещины длиной (с) равна (). Следовательно, при увеличении длины трещины на малую величи­ну (dc) упругая энергия уменьшается согласно выражению (3.2) на . Одновременно поверхностная энергия увеличивает­ся на .


По Гриффитсу условием разрушения является равенство этих изменений энергии. Из этого следует, что максимальная техничес­кая прочность пластинки с внутренней трещиной длиной (с) равна

,

в случае плоского напряженного состояния.

При наличии краевой микротрещины, длина которой l вдвое меньше длины внутренней трещины

.

Из этих формул следует, что в средах, уменьшающих свободную поверхностную энер­гию, прочность уменьшается.

 
 

Дальнейшие исследования позволили уточнить условии, при которых трещина Гриффи­тса будет расти или смыкать­ся

(Изменение энергии (W) при образовании в ней трещины длиной (С))

Если длина трещины больше критической длины, то дальнейшее ее увеличение приведет к уменьшению общей энергии образца и тре­щина должна самопроизвольно расти.

Если трещина меньше кри­тической, то к уменьшению общей энергии приведет ее уменьшение и трещина должна самопроизвольно смыкаться. При большем напряжении критическая длина трещины, при которой она является неустойчивой, меньше чем при малом, т. е. = const.

Очагом зарождения трещин являются различные микродефекты:

Хрупкому разрушению металлического монокристалла всегда предшествует местная пластическая деформация, в ходе ко­торой формируются дислокационные микронеоднородности, являющиеся концентраторами внутренних напряжений и вызывав поэтому зарождение и развитие трещины. Происхождение и форма трещины зависят прежде всего от того, с хрупким или пластичес­ким материалом мы имеем дело.

Можно выделить три основных типа разрушения твердых тел.

Первый тип разрушения проявляется, когда дефекты в объеме и на поверхности одинаковы по степени опасности или возникают одновременно в процессе деформирования. Тогда во всем образце одновременно развивается множество микротрещин, которые за тем сливаются в одну магистральную трещину. При этом вся по­верхность разрыва образна шероховатая. Так разрушаются поли­кристаллы, в которых микротрещины возникают в кристаллитах в результате пластической деформации и на ослабленных границах зерен. В монокристаллах множество предразрывных трещин воз­никает вследствие местных пластических деформаций в различ­ных местах объема.

Второй тип проявляется, когда поверхностные дефекты опаснее внутренних и степень опасности отдельных поверхностных дефек­тов примерно одинакова. В этом случае при определенных услови­ях трещины растут единым фронтом кцентру образца. Так разру­шаются нехрупкие твердые полимеры при малых напряжениях и больших временах испытаний.

Третий тип разрушения проявляется, когда на поверхности или в объеме хрупкого материала имеется выделяющийся по степени опасности дефект, от которого растет первичная трещина. По мере роста первичной трещины напряжение (σ') в оставшемся нераз­рушенном сечении образца становится все больше по сравнению с исходным номинальным напряжением, рассчитанным на все попе­речное сечение; вследствие этого рост трещины ускоряется. Когда нарастающее напряжение σ' становится равным, а затем превос­ходит критическое σк , происходит переход от первой стадии раз­рыва ко второй и первичная трещина растет со скоростью, близ­кой к критической K). Вторичные трещины начинают быстро рас­ти в оставшемся сечении при . Они образуют шероховатую зону поверхности разрушения, которая покрыта линиями скола, возникающими при встрече фронтов растущих трещин. Третий тип разрушения характерен для таких хрупких, твердых тел, как алмаз, ионные кристаллы, хрупкие пластмассы, керамические ма­териалы, неорганические стекла.

Основы и уравнения прочности материалов | Механика материалов

Меню «Прочность / Механика материалов»

Сопротивление материалов , также называемое механика материалов , представляет собой предмет, изучающий поведение твердых объектов, подверженных напряжениям и деформациям.

В материаловедении прочность материала - это его способность без разрушения выдерживать приложенную нагрузку.Нагрузка, приложенная к механическому элементу, будет вызывать внутренние силы внутри элемента, называемые напряжениями, когда эти силы выражаются в единицах. Напряжения, действующие на материал, по-разному вызывают деформацию материала. Деформация материала называется деформацией, если эти деформации также относятся к единице. Приложенные нагрузки могут быть осевыми (растягивающими или сжимающими) или сдвигающими. Напряжения и деформации, возникающие в механическом элементе, необходимо рассчитать, чтобы оценить его несущую способность.Это требует полного описания геометрии элемента, его ограничений, нагрузок, приложенных к элементу, и свойств материала, из которого он состоит. С полным описанием нагрузки и геометрии элемента можно рассчитать состояние напряжения и состояние деформации в любой точке элемента. Когда состояние напряжения и деформации внутри элемента известно, можно рассчитать прочность (несущую способность) этого элемента, его деформации (характеристики жесткости) и его стабильность (способность сохранять свою первоначальную конфигурацию).Рассчитанные напряжения затем можно сравнить с некоторой мерой прочности элемента, такой как текучесть материала или предел прочности. Рассчитанный прогиб элемента можно сравнить с критериями прогиба, основанными на использовании элемента. Расчетную нагрузку на продольный изгиб элемента можно сравнить с приложенной нагрузкой. Расчетная жесткость и распределение массы элемента могут использоваться для расчета динамического отклика элемента, а затем сравниваться с акустической средой, в которой он будет использоваться.

Под прочностью материала понимается точка на инженерной кривой «напряжение-деформация» (предел текучести), за которой материал испытывает деформации, которые не будут полностью устранены при снятии нагрузки, и в результате элемент будет иметь постоянный прогиб. Предел прочности относится к точке на инженерной кривой «напряжение – деформация», соответствующей напряжению, вызывающему разрушение.

Ниже приведены основные определения и уравнения, используемые для расчета прочности материалов.


Напряжение (нормальное)

Напряжение - это отношение приложенной нагрузки к площади поперечного сечения растягиваемого элемента, выраженное в фунтах на квадратный дюйм (psi) или кг / мм 2 .

Нагрузка

л

Напряжение, σ

=


=


Площадь

А

Деформация (нормальная)

Безразмерная мера деформации материала.

изменение длины

Δ L

Деформация, ε

=


=


исходная длина

л

Кривая деформации напряжения

Предел пропорциональности - это точка на кривой напряжения-деформации, в которой она начинает отклоняться от прямолинейная связь между напряжением и деформацией.См. Сопроводительный рисунок в (1 и 2).

Предел упругости - это максимальное напряжение, которому образец может подвергаться и вернуться к исходной длине после снятия нагрузки. Говорят, что материал подчеркнут в упругая область, когда рабочее напряжение не превышает предела упругости, и подлежащая напряжению в пластической области, когда рабочее напряжение действительно превышает предел упругости. Предел упругости для стали для всех практических целей такой же, как и ее предел пропорциональности.См. Сопроводительный рисунок в (1, 2).

Предел текучести - это точка на кривой напряжения-деформации, в которой происходит внезапное увеличение деформации. без соответствующего увеличения стресса. Не все материалы имеют предел текучести. См. Сопроводительный рисунок в (1).

Предел текучести, S y , это максимальное напряжение, которое может быть приложено без остаточной деформации образца для испытаний.Это значение напряжения на пределе упругости материалов для который существует предел упругости. Из-за сложности определения предела упругости и поскольку многие материалы не имеют упругой области, предел текучести часто определяется метод смещения, как показано на прилагаемом рисунке в (3). Предел текучести в таком case - значение напряжения на кривой напряжения-деформации, соответствующее определенному количеству постоянных набор или напряжение, обычно 0.1 или 0,2% от исходного размера.


Модуль упругости

Деформация металла пропорциональна приложенным нагрузкам в диапазоне нагрузок.

Поскольку напряжение пропорционально нагрузке, а деформация пропорциональна деформации, это означает, что напряжение пропорционально деформации. Закон Гука утверждает эту пропорциональность.

Напряжение σ

=
= E
Штамм ε

Константа E - это модуль упругости, модуль Юнга или модуль упругости при растяжении, а также жесткость материала.Модуль Юнга составляет 10 6 фунт / кв. Дюйм или 10 3 кг / мм 2 . Если материал подчиняется закону Гука, он эластичен. Модуль не чувствителен к состоянию материала. Нормальная сила напрямую зависит от модуля упругости.


Предел пропорциональности

Наибольшее напряжение, при котором материал способен выдерживать приложенную нагрузку без отклонения от пропорциональности напряжения к деформации.Выражается в фунтах на квадратный дюйм (кг / мм 2 ).


Предел прочности (растяжение)

Максимальное напряжение, которое материал выдерживает при приложении нагрузки. Значение определяется делением нагрузки при разрушении на первоначальную площадь поперечного сечения.


Предел упругости

Точка на кривой "напряжение-деформация", за которой материал необратимо деформируется после снятия нагрузки.


Предел текучести

Точка, в которой материал превышает предел упругости и не возвращается к своей исходной форме или длине, если напряжение снимается. Это значение определяется путем оценки диаграммы напряжения-деформации, полученной во время испытания на растяжение.


Коэффициент Пуассона

Отношение поперечной деформации к продольной - это коэффициент Пуассона для данного материала.

боковая деформация
мкм =
продольная деформация

Коэффициент Пуассона - это безразмерная константа, используемая для анализа напряжения и прогиба таких конструкций, как балки, пластины, оболочки и вращающиеся диски.

Алюминий

0,334

Нейзильбер

0,322

Бериллиевая медь

0,285

Фосфорная бронза

0.349

Латунь

0,340

Резина

0,500

Чугун, серый

0,211

Сталь литая

0.265

Медь

0,340

высокоуглеродистый

0,295

Инконель

0,290

легкая

0.303

Свинец

0,431

никель

0,291

Магний

0,350

Кованое железо

0.278

Металлический монель

0,320

цинк

0,331


Напряжение изгиба

При сгибании куска металла одна поверхность материала растягивается при растяжении, а противоположная поверхность сжимается.Отсюда следует, что между двумя поверхностями есть линия или область нулевого напряжения, называемая нейтральной осью. Сделайте следующие предположения в простой теории изгиба:

  1. Балка изначально прямая, ненапряженная и симметричная.
  2. Материал балки линейно эластичный, однородный и изотропный.
  3. Пропорциональный предел не превышен.
  4. Модуль Юнга для материала одинаков при растяжении и сжатии
  5. Все прогибы небольшие, поэтому плоские поперечные сечения остаются плоскими до и после изгиба.

Используя классические формулы балки и свойства сечения, можно получить следующую взаимосвязь:

3 PL
Напряжение изгиба, σ b =
2 вес 2
PL 3
Модуль упругости при изгибе или изгибе, E b =
4 вес 3 y
Где: п. = нормальная сила
л = длина балки
Вт = ширина луча
т = толщина балки
y = прогиб в точке нагрузки

Сообщаемый модуль упругости при изгибе обычно является начальным модулем из кривой зависимости напряжения от деформации при растяжении.

Максимальное напряжение возникает на поверхности балки, наиболее удаленной от нейтральной поверхности (оси), и составляет:

Mc млн
Максимальное поверхностное напряжение, σ max =
=
I Z

Где: млн = изгибающий момент
с = расстояние от нейтральной оси до внешней поверхности, где возникает максимальное напряжение
I = момент инерции
Z = I / c = модуль упругости сечения

Для прямоугольной консольной балки с сосредоточенной нагрузкой на одном конце максимальное поверхностное напряжение определяется по формуле:

Методы уменьшения максимального напряжения состоят в том, чтобы сохранить постоянную энергию деформации в балке при изменении профиля балки.Дополнительные профили балки бывают трапециевидные, конические и торсионные.
Где: г = прогиб балки под нагрузкой
E = Модуль упругости
т = толщина балки
л = длина балки

Урожайность

Податливость возникает, когда расчетное напряжение превышает предел текучести материала. Расчетное напряжение обычно представляет собой максимальное поверхностное напряжение (простая нагрузка) или напряжение Фон Мизеса (сложные условия нагружения). Критерий текучести фон Мизеса утверждает, что текучесть происходит, когда напряжение фон Мизеса превышает предел текучести при растяжении.Часто в результатах анализа напряжений методом конечных элементов используются напряжения фон Мизеса. Стресс фон Мизеса:

σ v =

1 - σ 2 ) 2 + (σ 2 - σ 3 ) 2 + (σ 1 - σ 3 ) 2

2

где σ 1 , σ 2 , σ 3 - главные напряжения.

Коэффициент запаса прочности является функцией расчетного напряжения и предела текучести. Следующее уравнение обозначает коэффициент безопасности, f s .

Где Y S - предел текучести, а D S - расчетное напряжение

Дополнительную информацию см. На странице «Существенные условия и ссылки».

Связанный:

  • Прочность материалов Методы измерения момента площади для расчета прогиба в балках, спецификации и характеристики материалов - черные и цветные, опорные колонны и изгиб, момент инерции, модуль упругости сечения, радиусы вращательных уравнений, треугольные, шестигранные сечения Момент инерции, Модуль сечения, радиусы круговых уравнений, эксцентрические формы, момент инерции, модуль сечения, радиусы вращения
  • Сопротивление материалов Н.М. Беляев Премиум-подписка на 648 страниц, необходимая для просмотра документа / книги
  • Прогиб балки и расчет конструкции
  • Сечение Момент площади Калькуляторы инерции
  • Допуски, пределы технического проектирования и посадки

© Copyright 2000-2020, Engineers Edge, LLC www.Engineedge.com
Все права защищены
Отказ от ответственности | Обратная связь | Реклама | Контакт

Дата / Время:

.

МЕХАНИЧЕСКИЕ СВОЙСТВА МЕТАЛЛОВ И СПЛАВОВ

Механические свойства имеют первостепенное значение в более крупных промышленных применениях металлов, поэтому они требуют большого внимания при их изучении.

Прочность. - Прочность материала - это свойство сопротивления внешним нагрузкам или напряжениям без повреждения конструкции. Термин «предел прочности » относится к удельному напряжению (фунты на квадратный дюйм), развиваемому в материале в результате максимальной медленно прикладываемой нагрузки, которой материал может выдержать без разрушения при испытании на растяжение.Испытание на растяжение наиболее часто применяется к металлам, потому что оно говорит об их свойствах гораздо больше, чем любое другое отдельное испытание. В металлургии о разрушении часто говорят как об отказе, разрыве или разрушении; перелом металла - это название поверхности, на которой произошел разрыв.

Прочность металлов и сплавов зависит от двух факторов, а именно, прочности кристаллов, из которых они состоят, и прочности сцепления между этими кристаллами.Самое сильное известное вещество - это вольфрамовая проволока электрических ламп накаливания. Чистое железо непрочно, но когда сталь легирована углеродом для получения стали, она может быть прочнее любого из чистых металлов, кроме вольфрама.

Напряжение и деформация. - Напряжение - это сила внутри тела, которая сопротивляется деформации из-за приложенной извне нагрузки. Если эта нагрузка действует на поверхность единичной площади, это называется единичной силой, а сопротивление ей - единиц. Таким образом, количественно напряжение - это сила на единицу площади; на европейском континенте он выражается в килограммах на квадратный миллиметр, в Соединенных Штатах - фунтах на квадратный дюйм, а в Англии обычно используются длинные тонны на квадратный дюйм.

Когда внешняя сила действует на эластичный материал, материал деформируется, и деформация пропорциональна нагрузке. Это искажение или деформация составляет деформаций, единиц деформации, измеряемой в США и Англии в дюймах на дюйм, а в Европе - в сантиметрах на сантиметр. Единичная деформация - это отношение расстояний или длин.

Эластичность. - Любой материал, подверженный внешней нагрузке, деформирован или деформирован.Упруго напряженные материалы возвращаются к своим первоначальным размерам при снятии нагрузки, если она не слишком велика. Такое искажение или деформация пропорциональна величине нагрузки до определенной точки, но когда нагрузка слишком велика, материал постоянно деформируется, а при дальнейшем увеличении нагрузки до определенной точки материал разрушается. Свойство восстановления исходных размеров после снятия внешней нагрузки известно как эластичность .

Модуль упругости. - В пределах эластичности отношение напряжения к деформации известно как модуль упругости (т.е. мера упругости).

Модуль упругости выражает жесткость материала. Для стали и большинства металлов это постоянное свойство, на которое мало влияет термическая обработка, горячая или холодная обработка или фактический предел прочности металла. Их модули упругости показывают, что когда стержни из стали и алюминия одинакового размера подвергаются одинаковой нагрузке, возникающая в результате упругая деформация в алюминии будет почти в три раза больше, чем в стальном стержне.



Пропорциональный предел упругости. - Металлы обычно не эластичны во всем диапазоне нагрузок. Предел пропорциональности напряжения к деформации известен как предел пропорциональности . Предел упругости - это максимальное удельное напряжение, которое испытываемый образец будет выдерживать и все еще возвращаться к своим исходным размерам после снятия нагрузки. Предел пропорциональности и предел упругости в металлах очень близки друг к другу, настолько, что их часто путают, и теперь принято объединять их в один термин «Предел пропорциональной упругости». Это важное свойство, напряжение, которое нельзя превышать при проектировании.

Природа эластичности. - Эластичность металлического вещества является функцией сопротивления его атомов разделению, сжатию или вращению друг относительно друга и, таким образом, является фундаментальным свойством материала. Итак, эластичность демонстрируется как функция атомных сил. Это объясняет, почему модуль упругости прочной и хрупкой термообработанной легированной стали точно такой же, как у сравнительно слабой и вязкой отожженной стали.

Предел текучести. - Это точка на кривой "напряжение-деформация", в которой напряжение выравнивается или фактически уменьшается при продолжении деформации. Этот термин строго применим только к малоуглеродистым сталям, поскольку определяющая его характеристика не встречается в других металлах, легированных сталях или даже холоднодеформированных или нормализованных низкоуглеродистых сталях.

Максимальная сила. - Наибольшая нагрузка, которую выдерживает образец, деленная на первоначальную площадь поперечного сечения, называется пределом прочности на разрыв или пределом прочности детали.

Пластичность. - Пластичность - это способность металла постоянно деформироваться при растяжении без разрушения. В частности, этот термин обозначает емкость, которую нужно тянуть от проволоки большего диаметра к меньшему. Такая операция, очевидно, включает в себя как удлинение, так и уменьшение площади, и значения этих двух характеристик металла, определенные при испытании на растяжение, обычно принимаются в качестве меры пластичности металла.

Прочность. - Вязкость определяется как свойство поглощения значительной энергии до разрушения. Это мера общей способности материала поглощать энергию, включая энергию как упругой, так и пластической деформации при постепенно прикладываемой нагрузке. Одним из наиболее распространенных тестов на ударную вязкость является «испытание на удар», в котором измеряется энергия, поглощенная при разрушении образца при внезапном ударе.

Природа прочности. - Прочность металла определяется степенью скольжения, которая может происходить внутри кристаллов, не приводя к разрушению металла.Возможно, это результат попеременного проскальзывания и расклинивания каждой клиновидной кристаллографической плоскости, удерживаемой до приложения большего напряжения. Хрупкий металл или сплав либо не перестанет скользить после достижения упругой деформации, либо остановится только на короткое время перед разрушением. Очевидно, что последовательная остановка и проскальзывание вызовут деформацию; поэтому вязкие металлы и сплавы часто являются наиболее пластичными и пластичными.

Иногда кристаллы металла могут быть прочными, но границы кристаллов могут содержать примеси, так что наименьшая деформация кристаллической массы может вызвать растрескивание через хрупкий материал границ зерен.Это верно для стали, содержащей значительное количество фосфора, и для меди, содержащей висмут.

Ковкость. - Ковкость - это свойство металла, которое допускает остаточную деформацию при сжатии без разрушения. В частности, это означает способность раскатывать или забивать тонкие листы. Свойство пластичности похоже, но не то же самое, что и пластичность, и разные металлы не обладают этими двумя свойствами в одинаковой степени: хотя свинец и олово относительно высоки в порядке пластичности, им не хватает необходимой прочности на разрыв. быть втянутым в тонкую проволоку.Большинство металлов обладают повышенной ковкостью и пластичностью при более высоких температурах. Например, железо и никель очень пластичны при ярко-красном огне (1000 ° C).

Хрупкость. - Хрупкость подразумевает внезапный отказ. Это свойство ломаться без предупреждения, то есть без видимой остаточной деформации. Это противоположность ударной вязкости в том смысле, что хрупкое тело имеет небольшое сопротивление разрыву после достижения предела упругости. Хрупкость противоположна пластичности в том смысле, что она предполагает разрыв без значительной деформации.Часто твердые металлы являются хрупкими, но эти термины не следует путать или использовать как синонимы.

Усталостный отказ. - Если металл подвергается частым повторяющимся нагрузкам, он в конечном итоге разорвется и выйдет из строя.

Чередование стресса приведет к неудаче быстрее, чем повторение стресса. Под «чередованием напряжений» подразумевается попеременное растяжение и сжатие в любом волокне. Разрушение металлов и сплавов под действием повторяющихся или переменных напряжений, слишком малых, чтобы вызвать даже остаточную деформацию при статическом применении, называется усталостным разрушением .

Коррозионная усталость. - Если элемент подвергается также воздействию коррозионных агентов, таких как влажная атмосфера или масло, не очищенное от кислоты, нагрузка, необходимая для выхода из строя, намного ниже. Самые прочные стали не выдерживают усталости и коррозии при удельном напряжении волокна не более 24000 фунтов на квадратный дюйм, даже если их предел прочности может указывать на то, что они могут выдерживать гораздо более высокое напряжение. Интересно отметить, что удельное напряжение чрезвычайно прочной термически обработанной легированной стали, подверженной коррозионной усталости, будет не больше, чем у относительно слабой конструкционной стали.Очевидна важность защиты поверхностей усталостных элементов от коррозии с помощью цинкования, гальванизации и т. Д., Если и когда это возможно.

Твердость. - Качество твердости является сложным, и подробное исследование показало, что оно представляет собой комбинацию ряда физических и механических свойств. Его чаще определяют в терминах метода, используемого для его измерения, и обычно означает сопротивление вещества вдавливанию. Твердость также может быть определена с точки зрения устойчивости к царапинам и, таким образом, связана с износостойкостью.Термин твердость иногда используется для обозначения жесткости или состояния деформируемых изделий, поскольку твердость металла при вдавливании тесно связана с его пределом прочности при растяжении.

В инженерной практике сопротивление металла проникновению твердым инструментом для вдавливания обычно считается определяющим свойством твердости. Был разработан ряд стандартизированных испытательных машин и пенетраторов, наиболее распространенными из которых являются машины Бринелля, Роквелла и Виккерса.

При испытании Бринелля шарик из закаленной стали диаметром 10 мм вдавливается в поверхность испытуемого материала под нагрузкой 500 или 3000 кг и измеряется площадь вдавливания.Затем твердость по Бринеллю выражается как отношение приложенной нагрузки к площади слепка.

В тестах Rockwell используется ряд различных масштабов тестирования с использованием различных пенетраторов и нагрузок. Чаще всего используются шкалы «C», в которых используется алмазный конусный пенетратор при основной нагрузке 150 кг, и шкала «B», в которой используется закаленный стальной шар диаметром 1/16 дюйма при основной нагрузке 100 кг. кг. В этом испытании разница глубины проникновения между глубиной проникновения небольшой нагрузки в 10 кг и приложенной основной нагрузкой принимается в качестве меры твердости.

В испытании Виккерса используется квадратный индентор в форме ромбовидной пирамиды, который может быть нагружен от 1 до 120 кг. Как и в тесте Бринелля, твердость выражается через приложенную нагрузку, деленную на площадь поверхности пирамидального отпечатка.

Тест Бринелля обычно используется только для довольно толстых срезов, таких как прутки и поковки, в то время как тест Роквелла обычно используется как для толстых, так и для тонких срезов, таких как полосы и трубки. Поверхностный Роквелл можно использовать для деталей толщиной до 0.010 дюймов. Тестер Виккерса чаще всего используется как лабораторный прибор для очень точных измерений твердости, а не как инструмент производственного контроля.

Склероскоп Шора измеряет упругость, а не твердость, хотя они взаимосвязаны. Склероскоп измеряет отскок падающего молотка от испытательной поверхности, и число твердости выражается как высота отскока в терминах максимального отскока от полностью закаленной высокоуглеродистой стали.

Природа твердости и мягкости. - Сопротивление металла проникновению другим телом, очевидно, частично зависит от силы сопротивления его межатомных связей. На это указывает почти точная параллель порядка твердости металлов и их модулей упругости. Единственное известное исключение - это соотношение магния и алюминия. Магний поцарапает алюминий, хотя его модуль упругости и средняя прочность межатомных связей меньше.


Дата: 24.12.2015; просмотр: 1249


.

Simple English Wikipedia, бесплатная энциклопедия

Некоторые химические элементы называются металлами . Они являются большинством элементов периодической таблицы. Эти элементы обычно обладают следующими свойствами:

  1. Они могут проводить электричество и тепло.
  2. Их легко сформировать.
  3. У них блестящий вид.
  4. Они имеют высокую температуру плавления.

Большинство металлов остаются твердыми при комнатной температуре, но это не обязательно.Ртуть жидкая. Сплавы - это смеси, в которых хотя бы одна часть смеси представляет собой металл. Примеры металлов: алюминий, медь, железо, олово, золото, свинец, серебро, титан, уран и цинк. Хорошо известные сплавы включают бронзу и сталь.

Изучение металлов называется металлургией.

Признаки сходства металлов (свойства металлов) [изменить | изменить источник]

Большинство металлов твердые, блестящие, они кажутся тяжелыми и плавятся только при очень высоких температурах.Куски металла издают звон колокольчика при ударе чего-то тяжелого (они звонкие). Тепло и электричество могут легко проходить через металл (он проводящий). Кусок металла можно разбить на тонкий лист (он ковкий) или растянуть на тонкую проволоку (он пластичный). Металл трудно разорвать (у него высокая прочность на разрыв) или разбить (у него высокая прочность на сжатие). Если надавить на длинный тонкий кусок металла, он согнется, а не сломается (он эластичный). За исключением цезия, меди и золота, металлы имеют нейтральный серебристый цвет.

Не все металлы обладают этими свойствами. Ртуть, например, жидкая при комнатной температуре, свинец очень мягкий, а тепло и электричество не проходят через железо так, как через медь.

Мост в России металлический, вероятно, железный или стальной.

Металлы очень полезны людям. Их используют для изготовления инструментов, потому что они могут быть прочными и легко поддающимися обработке. Из железа и стали строили мосты, здания или корабли.

Некоторые металлы используются для изготовления таких предметов, как монеты, потому что они твердые и не изнашиваются быстро.Например, медь (блестящая и красного цвета), алюминий (блестящая и белая), золото (желтая и блестящая), а также серебро и никель (также белые и блестящие).

Некоторые металлы, например сталь, можно делать острыми и оставаться острыми, поэтому их можно использовать для изготовления ножей, топоров или бритв.

Редкие металлы с высокой стоимостью, такие как золото, серебро и платина, часто используются для изготовления ювелирных изделий. Металлы также используются для изготовления крепежа и шурупов. Кастрюли, используемые для приготовления пищи, могут быть сделаны из меди, алюминия, стали или железа.Свинец очень тяжелый и плотный, и его можно использовать в качестве балласта на лодках, чтобы не допустить их опрокидывания или защитить людей от ионизирующего излучения.

Многие изделия, сделанные из металлов, на самом деле могут быть изготовлены из смесей по крайней мере одного металла с другими металлами или с неметаллами. Эти смеси называются сплавами. Некоторые распространенные сплавы:

Люди впервые начали делать вещи из металла более 9000 лет назад, когда они обнаружили, как получать медь из [] руды. Затем они научились делать более твердый сплав - бронзу, добавляя к ней олово.Около 3000 лет назад они открыли железо. Добавляя небольшое количество углерода в железо, они обнаружили, что из них можно получить особенно полезный сплав - сталь.

В химии металл - это слово, обозначающее группу химических элементов, обладающих определенными свойствами. Атомы металла легко теряют электрон и становятся положительными ионами или катионами. Таким образом, металлы не похожи на два других вида элементов - неметаллы и металлоиды. Большинство элементов периодической таблицы - металлы.

В периодической таблице мы можем провести зигзагообразную линию от элемента бора (символ B) до элемента полония (символ Po). Элементы, через которые проходит эта линия, - это металлоиды. Элементы, расположенные выше и справа от этой линии, являются неметаллами. Остальные элементы - это металлы.

Большинство свойств металлов обусловлено тем, что атомы в металле не очень крепко держатся за свои электроны. Каждый атом отделен от других тонким слоем валентных электронов.

Однако некоторые металлы отличаются. Примером может служить металлический натрий. Он мягкий, плавится при низкой температуре и настолько легкий, что плавает на воде. Однако людям не следует пробовать это, потому что еще одно свойство натрия состоит в том, что он взрывается при соприкосновении с водой.

Большинство металлов химически стабильны и не вступают в реакцию легко, но некоторые реагируют. Реактивными являются щелочные металлы, такие как натрий (символ Na) и щелочноземельные металлы, такие как кальций (символ Ca). Когда металлы действительно вступают в реакцию, они часто реагируют с кислородом.Оксиды металлов являются основными. Оксиды неметаллов кислые.

Соединения, в которых атомы металлов соединены с другими атомами, образуя молекулы, вероятно, являются наиболее распространенными веществами на Земле. Например, поваренная соль - это соединение натрия.

Кусок чистой меди, найденной как самородная медь

Считается, что использование металлов отличает людей от животных. До того, как стали использовать металлы, люди делали инструменты из камня, дерева и костей животных. Сейчас это называется каменным веком.

Никто не знает, когда был найден и использован первый металл. Вероятно, это была так называемая самородная медь, которую иногда находят большими кусками на земле. Люди научились делать из него медные инструменты и другие вещи, хотя для металла он довольно мягкий. Они научились плавке, чтобы получать медь из обычных руд. Когда медь плавили на огне, люди научились делать сплав под названием бронза, который намного тверже и прочнее меди. Из бронзы делали ножи и оружие.Это время в истории человечества примерно после 3300 г. до н.э. часто называют бронзовым веком, то есть временем бронзовых инструментов и оружия.

Примерно в 1200 году до нашей эры некоторые люди научились делать железные орудия труда и оружие. Они были даже тверже и прочнее бронзы, и это было преимуществом на войне. Время железных инструментов и оружия теперь называется железным веком. . Металлы были очень важны в истории человечества и цивилизации. Железо и сталь сыграли важную роль в создании машин. Золото и серебро использовались в качестве денег, чтобы люди могли торговать, то есть обмениваться товарами и услугами на большие расстояния.

В астрономии металл - это любой элемент, кроме водорода или гелия. Это потому, что эти два элемента (а иногда и литий) - единственные, которые образуются вне звезд. В небе спектрометр может видеть признаки металлов и показывать астроному металлы в звезде.

В организме человека некоторые металлы являются важными питательными веществами, такими как железо, кобальт и цинк. Некоторые металлы могут быть безвредными, например рутений, серебро и индий. Некоторые металлы могут быть токсичными в больших количествах. Другие металлы, такие как кадмий, ртуть и свинец, очень ядовиты.Источники отравления металлами включают горнодобывающую промышленность, хвостохранилища, промышленные отходы, сельскохозяйственные стоки, профессиональные воздействия, краски и обработанную древесину.

.

Прочность на растяжение - Простая английская Википедия, бесплатная энциклопедия

Прочность на растяжение - это мера силы, необходимой для того, чтобы натянуть что-либо, например канат, проволоку или несущую балку, до точки разрыва.

Предел прочности материала на разрыв - это максимальное значение растягивающего напряжения, которое он может выдержать до разрушения, например разрушения.

Существует три типичных определения прочности на разрыв:

  • Предел текучести - напряжение, которое материал может выдержать без остаточной деформации.Это не четко очерченная точка. Предел текучести - это напряжение, которое вызовет остаточную деформацию 0,2% от первоначального размера.
  • Максимальная прочность - максимальное напряжение, которое может выдержать материал.

Некоторые типичные значения прочности на растяжение некоторых материалов:

Типичная прочность на разрыв некоторых материалов
Материал Предел текучести
(МПа)
Предел прочности
(МПа)
Плотность
(г / см³)
Конструкционная сталь Сталь ASTM A36 250 400 7.8
Сталь, API 5L X65 (Fikret Mert Veral) 448 531 7,8
Сталь, высокопрочный сплав ASTM A514 690 760 7,8
Maraging_Steel, марка 350 2400 2500 8,1
Стальная проволока 7,8
Сталь, струна г.2000 7,8
Полиэтилен высокой плотности (HDPE) 26-33 37 0,95
Полипропилен 12-43 19,7-80 0,91
Нержавеющая сталь AISI 302 - холоднокатаная 520 860 8,03;
Чугун 4,5% C, ASTM A-48 130 (??) 200 7,3;
Титановый сплав (6% Al, 4% V) 830 900 4.51
Алюминиевый сплав 2014-T6 400 455 2,7
Медь 99,9% Cu 70 220 8,92
Купроникель 10% Ni, 1,6% Fe, 1% Mn, остальное Cu 130 350 8,94
Латунь 250
Вольфрам 1510 19.25
Стекло (St Gobain "R") 4400 (3600 в композитном) 2,53
Бамбук 142 265 ,4
Мрамор НЕТ 15
Бетон НЕТ 3
Углеродное волокно НЕТ 5650 1,75
Паучий шелк 1150 (??) 1200
шелк шелкопряда 500
Кевлар 3620 1.44
Вектран 2850-3340
Сосна (параллельно волокнам) 40
Кость (конечность) 130
Нейлон, тип 6/6 45 75 1,15
Резина 15
Бор НЕТ 3100 2.46
Кремний, монокристаллический (m-Si) НЕТ 7000 2,33
Сапфир (Al 2 O 3 ) НЕТ 1900 3,9–4,1
Углеродные нанотрубки (см. Примечание ниже) НЕТ 62000 1,34
  • Примечание. Многослойные углеродные нанотрубки обладают наивысшим пределом прочности на разрыв из всех когда-либо измеренных материалов, и лаборатории производят их с пределом прочности на разрыв 63 ГПа, что все еще значительно ниже их теоретического предела в 300 ГПа.Однако по состоянию на 2004 год ни один макроскопический объект, построенный из углеродных нанотрубок, не имел прочности на разрыв, отдаленно приближающейся к этой цифре или существенно превышающей прочность высокопрочных материалов, таких как кевлар.
  • Примечание: многие значения зависят от производственного процесса и чистоты / состава.

(Источник: A.M. Howatson, P.G. Lund и J.D. Todd, «Engineering Tables and Data» p41)

.

Смотрите также