Силы действующие на автомобиль при повороте


Силы, действующие на автомобиль при повороте

При движении автомобиля на повороте его поперечная устойчивость может быть утрачена в результате действия инерционных сил, направленных перпендикулярно к продольной оси автомобиля. Чтобы определить эти силы рассмотрим схему, показанную на рис. 7.1. Примем, что автомобиль является плоской фигурой и движется по горизонтальной дороге, а шины в поперечном направлении не деформируются.

На участке 1—2 автомобиль движется прямолинейно и его ведущие колеса находятся в нейтральном положении. На участке 2—3 водитель поворачивает колеса, и автомобиль движется по кривой переменного радиуса (первой переходной кривой). На участке 3—4

Рис. 7.1. Силы, действующие на автомобиль при повороте: Rx, Rx2, Ry, Ry2 — продольные и поперечные реакции дороги на колеса переднего и заднего мостов; Рп — центробежная сила; Ру — поперечная составляющая центробежной силы; Рц и р3 — радиусы поворота центра масс и задней оси; 0 — угол поворота управляемой оси (приблизительно равен полусумме углов поворота управляемых колес); Ми — момент инерции автомобиля; у — угол между радиусом рц поворота центра тяжести и продолжением оси заднего моста

положение колес, повернутых на угол 0, остается неизменным. Также как и радиус р3 траектории середины заднего моста. На участке

  • 4— 5 (второй переход кривой) водитель поворачивает колеса в обратном направлении, и радиус р3 постепенно увеличивается. На участке
  • 5— 6 автомобиль снова движется прямолинейно.

При равномерном движении на участке 3—4 (кривая постоянного радиуса) из центра поворота О через центр тяжести автомобиля на него действует центробежная сила Р„

где т — масса автомобиля; со — угловая скорость автомобиля при повороте, со = ц/рц (и — скорость движения автомобиля); рц — расстояние от центра поворота до центра тяжести автомобиля,

Рц = Рз/cos у и р3 = L/tg0.

При больших скоростях движения потеря устойчивости автомобиля наиболее опасна. А так как в этих случаях угол поворота управляемых колес 0 незначителен, то им можно пренебречь, тогда

Таким образом, центробежная сила, действующая на автомобиль при его равномерном движении, рассчитывается по формуле

Поперечная составляющая центробежной силы

При равномерном движении (переходные кривые) на автомобиль действует также сила, вызванная изменением кривизны траектории. Поперечная составляющая Pyll этой силы пропорциональна скорости автомобиля и угловой скорости (оук поворота управляемых колес. Величина этой угловой скорости зависит от скорости движения: чем больше скорость, тем быстрее приходится поворачивать колеса, чтобы вписаться в поворот:

В случае неравномерного движения на автомобиль действует еще и сила РуШ:

где j - ускорение движения автомобиля.

Таким образом, поперечная инерционная сила, вызывающая занос и опрокидывание автомобиля при движении на повороте, представляется как

Сила РуП действует только в процессе поворота рулевого колеса. При входе автомобиля в поворот сила РуП положительна и вместе с силой Ру1 она увеличивает опасность заноса и опрокидывания автомобиля.

При выходе автомобиля из поворота скорость соук отрицательна и сила РуН частично уравновешивает силу Ру1, и автомобиль может двигаться с большей скоростью без потери устойчивости.

Сила РуШ увеличивается с увеличением угла 0 и ускорения j автомобиля. Поэтому во время вхождения автомобиля в поворот нарушение его устойчивости более вероятно при разгоне, чем при движении накатом, когда ускорение j и сила РуШ отрицательны.

В результате поворота автомобиля вокруг центра тяжести возникает инерционный момент Ми, который пропорционален угловому ускорению и моменту инерции автомобиля.

Поперечная инерционная сила Ру уравновешивается поперечными реакциями дороги Ryl и Ry2 на колеса автомобиля. Инерционный момент Мн влияет на перераспределение этих реакций, но так как это влияние на устойчивость автомобиля сравнительно невелико, то его можно не учитывать.

studref.com

Силы, действующие на автомобиль при повороте

Силы, действующие на автомобиль при повороте Ускорение автомобиля обусловлено равнодействующей всех приложенных к автомобилю сил. Сила тяжести и сила нормальной реакции направлены вертикально и компенсируют друг друга. Поэтому горизонтально направленное ускорение автомобилю сообщает сила трения покоя между колесами и дорогой. Для нее должно выполняться неравенство откуда следует неравенство для допустимой скорости на повороте: Подставляя сюда численные данные, характерные для поворота на городском перекрестке, получаем, что скорость автомобиля на повороте не может превышать

Разделы учебника

Смотрите также иллюстрации

  • Ускорение автомобиля при повороте

Динамика. 2014

Физика Класс → Иллюстрации по физике для 10 класса → Динамика

fizikaklass.ru

Вопрос 38. Кинематика поворота автомобиля.

Возникающие при повороте автомобиля боковые силы вызывают увод колес, что приводит к отклонению направлений скоростей V и V (см. рис.). Углы и , на которые отклоняются направления скоростей V и V за счет увода или бокового скольжения, развала и кинематики подвески называют углами увода соответственно передней и задней осей. Отношение боковой силы, действующей на ось, к углу её увода называют к-том сопротивления уводу данной оси.

Мгновенным центром поворота автомобиля является точка О пересечения перпендикуляров к направлениям скоростей V и V. Найдем расстояния R и C от точки О до продольной оси АБ и задней оси автомобиля. Для этого опустим перпендикуляр ОВ на продольную ось. Угол АОВ = , а угол ВОБ = - как углы с перпендикулярными сторонами. Из треугольников АОВ и ВОБ имеем:

АВ = С = Rtg и ВБ = Rtg(-).

Складывая эти два выражения получим:

R = , (7.4)

Отсюда: С = , (7.5)

Радиусом поворота автомобиля называют расстояние от центра поворота О до колеи переднего наружного колеса:

R= , (7.6)

При больших радиусах поворотов и соответственно малых углах величиной 0,5В можно пренебречь и считать cos(=1, тогда R R. В дальнейшем при изучении управляемости разницей между Rи R пренебрегаем и называем R радиусом поворота.

Угловая скорость поворота автомобиля = V/ R.

Анализируя полученные выражения, характеризующие поворот автомобиля, можно сделать вывод о том, что, если пренебречь уводом осей центр поворота автомобиля должен находится на продолжении задней оси АТС, т.е.:

R и С = 0

Видно, что при отсутствии увода кинематические параметры поворота при заданной базе АТС однозначно определяются величиной угла , а при наличии увода эти параметры зависят еще и от разности - . Значение и знак этой разности зависят от боковых сил, действующих на передние и задние колеса, а также от к-тов сопротивления уводу этих колес.

Свойства автомобиля изменять кинематические параметры поворота под действием внешних боковых сил при фиксированной величине угла называют поворачиваемостью автомобиля.

При равенстве углов увода передней и задней осей (= ) автомобиль обладает нейтральной поворачиваемостью. В этом случае и R остаются такими же как у автомобиля с жесткими колесами, однако центр поворота О смещен относительно оси задних колес.

Вопрос 39. Силы, действующие на автомобиль при повороте.

Движение автомобиля при его повороте сопровождается изменением его положения относительно неподвижной системы координат. Это движение связано с изменением как кинематических, так и динамических (силовых) параметров движения. В целом движение на повороте может быть описано следующими характеристиками:

1) силы инерции, действующие на автомобиль при повороте Р.

В общем случае силы инерции могут быть представлены в виде продольной составляющей Р и поперечной составляющей Р в системе координат связанной с автомобилем:

Р= m(j - V) и Р= m( V+ d V/dt)

Причем, положительное направление Рпротивоположно направлению движения автомобиля, а положительное направление Р- направление от центра поворота.

При отсутствии увода и с учетом угла поворота, как основного задающего параметра эти силы могут быть представлены в следующем виде:

Р= m(j - Vb/L) и Р= m( V+ V b/L + j b/L )

При этом составляющая Рможет быть представлена в виде трех слагаемых:

Р= mV= mV/R – проекция центробежной силы на поперечную ось.

Р= mV b/L – сила, возникающая в результате изменения угла поворота управляемых колес и изменения улов увода. При отсутствии увода эта ситла положительна при входе в поворот и отрицательна при выходе. При больших углах увода эта сила может быть отрицательна при входе в поворот и положительна при выходе.

Р= mj b/L - сила, возникающая в результате изменения скорости движения автомобиля на повороте. При отсутствии увода она положительна при ускоренном движении и отрицательна при замедленном. При небольших и больших углах увода эта сила может быть положительной и в процессе замедления.

2) реакции дороги R и R.

В общем случае: R= (Рb + J)/L и R= (Рa - J)/L

где: J- момент инерции автомобиля относительно вертикальной оси Z, проходящей через его центр масс.

Учитывая, что J= m, где: ab, подставляя выражения для Р и получим, без учета увода:

R= m(V/R + V + j) и R= mV/R

Для установившегося кругового движения: R= mV/R и R= mV/R.

Принято называть удельной боковой силой отношение боковой силы, действующей на оси, к нагрузке, приходящейся на колеса этой оси.

При установившемся круговом движении =. При неустановившемся движении . Так, при малых углах увода, при входе в поворот или ускоренном движении , а при выходе из поворота или замедлении .

С точки зрения обеспечения устойчивости движения более желательным является выполнение условия .

3) продольные реакции R и R.

Продольные реакции на ведомых колесах R при криволинейном движении остаются практически такими же, как и при прямолинейном движении.

Для нахождения продольной реакции на ведущих колесах Rиспользуют уравнение движения в направлении продольной оси, откуда:

R= Р+ R + R + P

Уравнение силового баланса при криволинейном движении можно записать так: Р= P+ P+ Р+ Р+ Р+ Р ,

где:

Р- сила, возникающая в результате изменения кинетической энергии вращательного движения автомобиля. При входе в поворот и при разгоне кинетическая энергия вращательного движения автомобиля увеличивается за счет энергии, подводимой к ведущим колесам от двигателя, а при выходе из поворота и при снижении скорости энергия уменьшается, что приводит к снижению необходимой тяговой силы.

Р- сила сопротивления движению, возникающая в результате качения колес на повороте с уводом. Энергия, затрачиваемая на увод, теряется безвозвратно.

Р= G/K

где: K=KKL/( Ka+ Kb) – приведенный к-т сопротивления уводу всех колес автомобиля.

4) нормальные реакции R на колесах автомобиля.

При криволинейном движении автомобиля нормальные реакции существенно отличаются от тех же реакций при прямолинейном движении. В результате действия инерционных сил и моментов в поперечной плоскости, нормальные реакции перераспределяются по бортам. В тех случаях, когда нужно найти реакции, действующие на каждом из колес, даже у двуосного автомобиля задача оказывается статически неопределимой и реакции могут быть найдены приближенно.

studfiles.net

Поперечная устойчивость автомобиля на повороте

У автомобиля, движущегося с большой скоростью, потеря поперечной устойчивости (опрокидывание) может произойти при совершении им поворота.

При движении автомобиля с установившейся скоростью на повороте с радиусом Rна него действует центробежная силаРс:

,

где v – скорость автомобиля;

g – ускорение силы тяжести.

Действие результирующей центробежной силы Рс, приложенной к центру масс, создает опрокидывающий момент на плечеhgвысоты центра масс автомобиля относительно опорной поверхности. Если момент этой силы будет больше восстанавливающего момента от сил весаGВ/2(рис.6), то произойдет опрокидывание автомобиля, то есть:

.

Откуда предельная допустимая (критическая) скорость движения автомобиля на повороте vкропределиться как:

vкр=.

Рис.6. Силы, действующие на автомобиль при его движении

на повороте радиуса R.

С увеличением скорости движения и уменьшением радиуса поворота центробежная сила резко возрастает. Например, даже при относительно небольшой скорости движения автомобиля на вираже v = 15м/с(54км/ч) и не очень крутом радиусе поворотаR= 40мбоковая составляющая центробежной силы уже начинает превышать половину веса автомобиля (Рс> 0,5G).

Период перехода автомобиля от прямолинейного движения к криволинейному движению на вираже сопровождается непрерывным изменением углового положения его продольной оси в плоскости дороги, что приводит к изменению центра О1и радиуса поворотаR. При этом происходит ускоренное вращение центра масс машины в горизонтальной плоскости относительно центральной точки задней осиО2. Вследствие этого возникает дополнительная центробежная силаР'с. При входе машины в поворот направление действия этой силы такое же, что и силыРс, а при выходе из поворота оно меняется на противоположное. Вследствие этого резкий поворот приводит к интенсивному росту суммарной силыРΣ=Рс+Р'с, снижению поперечной устойчивости и потере управляемости машины.

Если во время поворота автомобиль начинает терять управляемость или резко накренился, то прервать этот процесс можно увеличением радиуса поворота, то есть выходом из поворота. Тогда инерционная сила Р'сбудет действовать противоположно основной центробежной силеРси этим способствовать установлению устойчивости машины.

Занос автомобиля на повороте.Практика показывает, что в большинстве случаев скольжение автомобиля вбок при его повороте наступает прежде, чем опрокидывание. Предельная величина центробежной силы, которая может вызвать это скольжение, ограничивается силой сцепления шин с дорогойРφ = φG. Боковое скольжение автомобиля наступает при условии, когда:

Рс ≥ Рφили.

Из последнего соотношения следует, что предельное допустимое значение скорости движения автомобиля на повороте по устойчивости против скольжения равно:

vкр (φ) =.

При движении автомобиля на повороте под действием центробежной силы нормальные к опорной поверхности реакции на его внутренних (по отношению к центру поворота) колесах уменьшаются, а на внешних – увеличиваются. Пробуксовывание внутреннего колеса способствует потере устойчивости задней ведущей оси автомобиля на скользкой дороге.

Наличие на колесах автомобиля тяговой силы способствует возникновению буксования, а наличие тормозной силы – скольжению. Менее нагруженное внутреннее колесо ведущего моста начинает пробуксовывать раньше, чем внешнее, на которое воздействует нормальная реакция большей величины. Поэтому занос автомобиля чаще всего происходит при резком торможении или резком нажатии на педаль газа на скользкой дороге.

Рис. 7. Занос осей автомобиля на скользкой дороге:

а – задней оси; б – переднее оси; в – гашение заноса.

Согласно схеме (рис.7) распределения сил на повороте, занос передней оси заднеприводного автомобиля автоматически гасится, а занос задней оси прогрессирует под действием боковой составляющей центробежной силы. Для предотвращения аварии необходимо повернуть управляющие колеса в сторону заноса, что увеличивает радиус поворота и, соответственно, уменьшает центробежную силу.

studfiles.net

Вопрос 39. Силы, действующие на автомобиль при повороте

Движение автомобиля при его повороте сопровождается изменением его положения относительно неподвижной системы координат. Это движение связано с изменением как кинематических, так и динамических (силовых) параметров движения. В целом движение на повороте может быть описано следующими характеристиками:

1) силы инерции, действующие на автомобиль при повороте Р.

В общем случае силы инерции могут быть представлены в виде продольной составляющей Ри поперечной составляющей Рв системе координат связанной с автомобилем:

Р= m(j - V) и Р= m( V+ d V/dt)

Причем, положительное направление Рпротивоположно направлению движения автомобиля, а положительное направление Р- направление от центра поворота.

При отсутствии увода и с учетом угла поворота, как основного задающего параметра эти силы могут быть представлены в следующем виде:

Р= m(j - Vb/L) и Р= m( V+ V b/L + j b/L )

При этом составляющая Рможет быть представлена в виде трех слагаемых:

Р= mV= mV/R – проекция центробежной силы на поперечную ось.

Р= mV b/L – сила, возникающая в результате изменения угла поворота управляемых колес и изменения улов увода. При отсутствии увода эта ситла положительна при входе в поворот и отрицательна при выходе. При больших углах увода эта сила может быть отрицательна при входе в поворот и положительна при выходе.

Р= mj b/L - сила, возникающая в результате изменения скорости движения автомобиля на повороте. При отсутствии увода она положительна при ускоренном движении и отрицательна при замедленном. При небольших и больших углах увода эта сила может быть положительной и в процессе замедления.

2) реакции дороги Rи R.

В общем случае: R= (Рb + J)/Lи R= (Рa - J)/L

где: J-момент инерции автомобиля относительно вертикальной оси Z, проходящей через его центр масс.

Учитывая, что J= m, где: ab,подставляя выражения дляРиполучим, без учета увода:

R= m(V/R + V+ j)иR= mV/R

Для установившегося кругового движения:R= mV/RиR= mV/R.

Принято называть удельной боковой силой отношение боковой силы, действующей на оси, к нагрузке, приходящейся на колеса этой оси.

При установившемся круговом движении =. При неустановившемся движении . Так, при малых углах увода, при входе в поворот или ускоренном движении , а при выходе из поворота или замедлении .

С точки зрения обеспечения устойчивости движения более желательным является выполнение условия .

3) продольные реакции Rи R.

Продольные реакции на ведомых колесах Rпри криволинейном движении остаются практически такими же, как и при прямолинейном движении.

Для нахождения продольной реакции на ведущих колесах Rиспользуют уравнение движения в направлении продольной оси, откуда:

R= Р+ R+ R+ P

Уравнение силового баланса при криволинейном движении можно записать так: Р= P+ P+ Р+ Р+ Р+ Р,

где:

Р- сила, возникающая в результате изменения кинетической энергии вращательного движения автомобиля. При входе в поворот и при разгоне кинетическая энергия вращательного движения автомобиля увеличивается за счет энергии, подводимой к ведущим колесам от двигателя, а при выходе из поворота и при снижении скорости энергия уменьшается, что приводит к снижению необходимой тяговой силы.

Р-сила сопротивления движению, возникающая в результате качения колес на повороте с уводом. Энергия, затрачиваемая на увод, теряется безвозвратно.

Р= G/K

где:K=KKL/( Ka+ Kb)– приведенный к-т сопротивления уводу всех колес автомобиля.

4) нормальные реакции Rна колесах автомобиля.

При криволинейном движении автомобиля нормальные реакции существенно отличаются от тех же реакций при прямолинейном движении. В результате действия инерционных сил и моментов в поперечной плоскости, нормальные реакции перераспределяются по бортам. В тех случаях, когда нужно найти реакции, действующие на каждом из колес, даже у двуосного автомобиля задача оказывается статически неопределимой и реакции могут быть найдены приближенно.

studopedia.su

Силы действующие на автомобиль при движении

На движущийся автомобиль действует ряд сил, часть из которых направлена по оси движения автомобиля, а часть — под углом к этой оси. Условимся называть первые из этих сил продольными, а вторые боковыми.

Рис. Схема сил действующих на ведущее колесо. а — состояние неподвижности; б — состояние движения

Продольные силы могут быть направлены как по ходу, так и против хода движения автомобиля. Силы, направленные по ходу движения, являются движущимися и стремятся продолжить движение. Силы, направленные против хода движения, являются силами сопротивления и стремятся остановить автомобиль.

На автомобиль, движущийся по горизонтальному и прямому участку дороги, действуют следующие продольные силы:

  • тяговая сила
  • сила сопротивления воздуха
  • сила сопротивления качению

При движении автомобиля в гору возникает сила сопротивления подъему, а при разгоне автомобиля—сила сопро­тивления разгону (сила инерции).

Тяговая сила

Развиваемый двигателем автомобиля крутящий момент передается на ведущие колеса. В передаче крутящего момента от двигателя к ведущим колесам участвуют механизмы трансмиссии. Крутящий момент на ведущих колесах зависит от крутящего момента двигателя и передаточных чисел коробки передач и главной передачи. В точке касания колес с поверхностью дороги крутящий момент вызывает окружную силу. Противодействие дороги этой окружной силе выражается реактивной силой, передаваемой от дороги на ведущее колесо. Эта сила направлена в сторону движения автомобиля и называется толкающей или тяговой силой. Тяговая сила от колес передается на ведущий мост и далее на раму, заставляя автомо­биль двигаться. Величина тяговой силы тем больше, чем больше крутящий момент двигателя и передаточные числа коробки пере­дач и главной передачи. Тяговая сила на ведущих колесах дости­гает наибольшей величины при движении автомобиля на низшей передаче, поэтому низшую передачу используют при трогании с места автомобиля с грузом, при движении автомобиля по бездо­рожью. Величина тяговой силы на ведущих колесах автомобиля ограничивается сцеплением шин с поверхностью дороги.

Сила сцепления колес с дорогой

Трение, возника­ющее между ведущими колесами автомобиля и дорогой, называ­ется силой сцепления. Сила сцепления равна произведению коэф­фициента сцепления на сцепной вес, т. е. вес, приходящийся на ведущие колеса автомобиля. Величина коэффициента сцепления шин с дорогой зависит от качества и состояния дорожного покрытия, формы и состояния ри­сунка протектора ши­ны, давления воздуха в шине.

У легковых автомо­билей полный вес рас­пределяется по осям примерно поровну. По­этому сцепной вес его можно принять равным 50% полного веса. У грузовых автомоби­лей при полной их на­грузке сцепной вес (вес, приходящийся на заднюю ось) составляет примерно 60—70% полного веса.

Величина коэффициента сцепления имеет большое значение для эксплуатации автомобиля и безопасности движения, так как от него зависят проходимость автомобиля, тормозные качества, возможность, пробуксовки и заноса ведущих колес. При незначи­тельном коэффициенте сцепления трогание автомобиля с места со­провождается пробуксовкой, а торможение — скольжением колес. В результате автомобиль иногда не удается тронуть с места, а при торможении происходит резкое увеличение тормозного пути и возникновение заноса.

На асфальтобетонных покрытиях в жаркую погоду на поверх­ность выступает битум, делая дорогу маслянистой и более скольз­кой, что снижает коэффициент сцепления. Особенно сильно снижается коэффициент сцепления при смачивании дороги первым дождем, когда образуется еще не смытая пленка жидкой грязи. Заснежённая или обледенелая дорога особенно опасна в теплую погоду, когда поверхность подтаивает.

При увеличении скорости движения коэффициент сцепления снижается, в особенности на мокрой дороге, так как выступы ри­сунка протектора шины не успевают продавливать пленку влаги.

Исправное состояние рисунка протектора шины имеет большое значение при движении по грунтовым дорогам, снегу, песку, а также по дорогам с твердым покрытием, по покрытым пленкой грязи или воды. Благодаря наличию выступов рисунка опорная площадь шины уменьшается и, следовательно, возрастает удельное давление на поверхность дороги. При этом легче продавливается грязевая пленка и восстанавливается контакт с дорожным покрытием, а на легком грунте происходит непосредственное зацепление выступов рисунка за грунт.

Повышенное давление воздуха в шине уменьшает ее опорную поверхность, вследствие чего удельное давление возрастает на­столько, что при трогании с места и при торможении может произойти разрушение резины и сцепление колес с дорогой уменьшается.

Таким образом, величина коэффициента сцепления зависит от многих условий и может изменяться в довольно значительных пределах. Так как много дорожно-транспортных происшествий происходит из-за плохого сцепления, то водители должны уметь приблизительно оценивать величину коэффициента сцепления и выбирать скорость движения и приемы управления в соответствии с ним.

Сила сопротивления воздуха

При движении автомо­биль преодолевает сопротивление воздуха, которое складывается из нескольких сопротивлений:

  • лобового сопротивле­ния (около 55—60% всего сопротивления воздуха)
  • создаваемого выступающими частями—подножками автобуса или автомобиля, крыльями (12—18%)
  • возникающего при прохождении воздуха через радиатор и подкапотное пространство (10—15%) и др.

Передней частью автомобиля воздух сжимается и раздвигает­ся, в то время как в задней части автомобиля создается разреже­ние, которое вызывает образование завихрений.

Сила сопротивления воздуха зависит от величины лобовой, поверхности автомобиля, его формы, а также от скорости движе­ния. Лобовую площадь грузового автомобиля определяют как произведение колеи (расстояние между шинами) на высоту авто­мобиля. Сила сопротивления воздуха возрастает пропорционально квадрату скорости движения автомобиля (если скорость возра­стает в 2 раза, то сопротивление воздуха увеличивается в 4 раза).

Для улучшения обтекаемости и уменьшения сопротивления воздуха ветровое стекло автомобиля располагают наклонно, а вы­ступающие детали (фары, крылья, ручки дверей) устанавливают заподлицо с внешними очертаниями кузова. У грузовых автомоби­лей можно уменьшить силу сопротивления воздуха, закрыв грузо­вую платформу брезентом, натянутым между крышей кабины и задним бортом.

Сила сопротивления качению

На каждое колесо ав­томобиля постоянно действует вертикальная нагрузка, которая вызывает вертикальную реакцию дороги. При движении автомобиля на него действует сила сопротивления качению, которая возникает вследствие деформации шин и дороги и трения шин о дорогу.

Сила сопротивления качению равна произведению полного веса автомобиля на коэффициент сопротивления качению шин, который зависит от давления воздуха в шинах и качества дорожного покрытия. Вот- некоторые значения коэффициента сопротивления качению шин:

  • для асфальтобетонного покрытия— 0,014—0,020
  • для гравийного покрытия—0,02—0,025
  • для песка—0,1—0,3

Сила сопротивления подъему

Автомобильная дорога состоит из чередующихся между собой подъемов и спусков и редко имеет горизонтальные участки большой длины.

При движении на подъем автомобиль испытывает дополнитель­ное сопротивление, которое зависит от угла наклона дороги к гори­зонту. Сопротивление подъему тем больше, чем больше вес автомо­биля и угол наклона дороги. При подъезде к подъему необходимо правильно оценить возможности преодоления подъема. Если подъем непродолжительный, его преодолевают с разгоном автомобиля перед подъемом. Если подъем продолжительный, его преодолевают на пониженной передаче, переключившись на нее у начала подъема.

При движении автомобиля на спуске сила сопротивления подъе­му направлена в сторону движения и является движущей силой.

Сила сопротивления разгону

Часть тяговой силы при разгоне затрачивается на ускорение вращающихся масс, главным образом маховика коленчатого вала двигателя и колес автомобиля. Для того чтобы автомобиль начал двигаться с определенной ско­ростью, ему необходимо преодолеть силу сопротивления разгону, равную произведению массы автомобиля на ускорение. При разгоне автомобиля сила сопротивления разгону направлена в сторону, об­ратную движению. При торможении автомобиля и замедлении его движения эта сила направлена в сторону движения автомобиля. Бывают случаи, когда при резком разгоне груз или пассажиры падают из открытого кузова, с сидений мотоцикла, а при резком торможении пассажиры ударяются о лобовое стекло или о перед­ний борт автомобиля. Для того чтобы таких случаев не было, необ­ходимо, плавно увеличивая частоту вращения коленчатого вала двигателя, преодолевать силу сопротивления разгону и плавно осу­ществлять торможение автомобиля.

Центр тяжести

На автомобиль, как и на любое другое тело, действует сила тяжести, направленная вертикально вниз. Центром тяжести автомобиля называют такую точку автомобиля, от которой вес автомобиля распределяется равномерно во всех направлениях. У автомобиля центр тяжести располагается между передней и зад­ней осью на высоте около 0,6 м для легковых и 0,7—1,0 м для гру­зовых. Чем ниже расположен центр тяжести, тем устойчивее авто­мобиль против опрокидывания. При загрузке автомобиля грузом центр тяжести поднимается у легковых автомобилей примерно на 0,3—0,4 м, а у грузовых на 0,5 м и более в зависимости от рода груза. При неравномерном укладывании груза центр тяжести может также сместиться вперед, назад или в сторону, при этом будут на­рушаться устойчивость автомобиля и легкость управления.

ustroistvo-avtomobilya.ru

Динамика поворота. Силы, действующие на управляемые колеса

Рассмотрим случай, когда ведущими являются колеса задней оси. Касательная сила тяги задних колес передается на остов автомобиля в виде равнодействующейРк, направленной вперед вдоль оси машины (рис.10).

Рис.10. Схема сил, действующих на управляемые колеса заднеприводного автомобиля.

Эта сила передается на передний мост и передние колеса. В пятне контакта передних колес с дорогой возникают реакции. Равнодействующая этих реакций Rкравна толкающей силеРк.

Составляющая Рfтолкающей силыРкзатрачивается на преодоление силы сопротивления качению колес. СилаРfзависит от угла поворота колесα. Из рис. 10 видно, что при одинаковой толкающей силеРксоставляющаяРf (Рf=Рк · cosα) меньше при более крутом повороте.

Известно, что сила сопротивления качению колеса, повернутого под углом к направлению движения, повышается с увеличением угла его поворота, а активная сила Рf, толкающая колесо, уменьшается. Следовательно, баланс сил и скорость поступательного движения колеса можно сохранить на повороте (оставив её такой же, как при прямолинейном движении) только за счет увеличения касательной силы тягиРкна ведущих колесах, то есть путем повышения момента двигателя без перехода на пониженную передачу.

Поворот возможен только в том случае, когда сцепление управляемых колес с почвой больше толкающего усилия:

G1φ > Рк,

где G1- вертикальная нагрузка, действующая на управляемые колеса;

φ- коэффициент сцепления колес с опорной поверхностью дороги.

Учитывая, что Рк =Рf/cosα(рис.8), можно записать:

φ > Рf/ G1cosα или:

φcosα >f , (2)

где f– коэффициент сопротивления качению колеса.

Из этого выражения видно, что поворот автомобиля может быть осуществлен только в том случае, если коэффициент сопротивления качению меньше произведению коэффициента сцепления на косинус угла поворота колес. Если сцепление колес с дорогой плохое и величина f больше этого произведения, то управляемые колеса будут двигаться юзом и поворот не может быть реализован, машина теряет управляемость. На скользкой дороге коэффициентыφиfблизки между собой, вследствие чего управляемость автомобиля снижается.

Ведущие колеса – передние управляемые.В этом случае поворачивающий момент в тяговом режиме работы создается силами тяги передних управляемых колес (рис.11).

Условие осуществления поворота автомобиля с передними ведущими колесами (по аналогии с рассмотренным выше случаем) будет иметь вид:

G1φ > Рк .

Разделив обе части неравенства на силу тяжести, приходящуюся на переднюю ось, получим:

φ > Рк /G1илиφ > f.

Если сопоставить это выражение с неравенством (2), то можно сделать вывод, что устойчивость по сцеплению с дорогой автомобиля с передними ведущими колесами в сравнении с автомобилем, имеющим задние ведущие колеса, выше и не зависит от радиуса (угла) поворота. У переднеприводного автомобиля не нарушается на повороте баланс сил толкающей силы Рки сопротивления качениюРf, как это имеет место у заднеприводного автомобиля. Заметим, что эти примеры рассмотрены без учета инерционных сил. Влияние этих сил на управляемость автомобиля будет отрицательным в обоих случаях.

Рис.11. Схема сил, действующих на управляемые колеса переднеприводного автомобиля.

Из рис.10 видно, что движение заднеприводной машины характеризуется толкающим режимом работы задней оси по отношению к передней. Для переднеприводного автомобиля (рис.11) тянущий режим обеспечивается передней осью. Из теории регулирования известно, что тянущие системы более устойчивы.

studfiles.net


Смотрите также