Датчики топливной системы


Компоненты системы питания инжекторного двигателя и разновидности конструкций

Система питания инжекторного двигателя современного автомобиля — это сложнейший «организм», состоящий из датчиков, исполнительных устройств и самого главного — блока управления. Не зря в народе его называют «мозги». Именно блок управления контролирует работу всей системы впрыска топлива.

С его помощью происходит нормальное функционирование двигателя, регулировка угла опережения зажигания, момента впрыска топливовоздушной смеси и многих других параметров.

Описание

За многолетнюю историю автомобилестроения появилось несколько типов впрыска топлива. И конструкции инжекторной системы бензинового двигателя различаются, причём существенно. Дизель достаточно схож в системе впрыска с инжектором.

Но есть огромные отличия в конструкции отдельных механизмов — степень сжатия в дизельном моторе во много раз выше. В целом же первые конструкции инжекторных систем очень сильно были похожи на дизельные.

Центральный впрыск топлива

Моновпрыск — это самый простой механизм. Второе название — центральный впрыск. И он же был первым в истории. Массовое применение получил в США в начале 2 половины ХХ века. Как работает центральный впрыск? Простота — это именно то, что понравилось не только автовладельцам, но и производителям. Конструкция очень схожа с карбюратором, только вместо него применяется форсунка.

Она устанавливается на впускном коллекторе — одна на все цилиндры двигателя, независимо от их общего количества. Топливо поступает в коллектор постоянно, как и воздух. В результате происходит образование топливовоздушной смеси, которая распределяется по цилиндрам.

Плюсы и минусы

Преимущества, которыми обладает центральная система впрыска:

  • простота и дешевизна конструкции;
  • для смены режимов работы достаточно провести регулировку одной форсунки;
  • при смене карбюратора на инжектор (моновпрыск) существенных изменений в систему питания не производится.

К недостаткам относится то, что не выходит достигнуть высоких показаний экологичности. Поэтому на сегодняшний день автомобили с моновпрыском нельзя встретить в продаже и эксплуатации в развитых странах Америки, Европы и Азии. Разве что в странах третьего мира они будут беспрепятственно колесить по дорогам.

И самое большое неудобство — это то, что при выходе из строя форсунки двигатель останавливается и запустить его невозможно.

Распределённый впрыск топливной смеси

В таких системах количество форсунок равно числу цилиндров. Все форсунки находятся на впускном коллекторе, топливовоздушная смесь подаётся при помощи общей для всех топливной рампы. В ней происходит смешивание бензина и воздуха. Режимы работы форсунок:

  1. Фазированный впрыск — самые современные системы работают именно с его использованием. Количество форсунок и цилиндров одинаковое, открытие и закрытие электроклапанов происходит в зависимости от того, какой такт проходит двигатель. Наилучшим режимом работы мотора считается такой, при котором открытие форсунки происходит непосредственно перед началом такта впуска. И двигатель работает устойчиво, и достигается высокая экономия бензина. Преимущества такой топливной системы очевидны.
  2. Одновременный впрыск топливовоздушной смеси — открытие форсунок не зависит от такта. Они все открываются одновременно, несмотря на то, что находятся на впускных коллекторах «своих» цилиндров. Это несколько модернизированный моновпрыск, несмотря на то, что форсунок несколько, управление ими происходит так, будто установлена всего одна. В общем, такие конструкции надёжны и работа их стабильна, но по характеристикам уступают более современным конструкциям.
  3. Попарно-параллельный впрыск топливной смеси немного отличается от предыдущего. Главное отличие — открываются не все форсунки разом, а парами. Одна пара открывается перед впуском, вторая — перед выпуском. Именно так обычно работает впрыск. Из употребления такие системы вышли давно, но, например, если выходит из строя датчик фаз, современные инжекторы переходят в аварийный режим (попарно-параллельный впрыск происходит вместо фазированного, так как без параметров этого датчика работа невозможна).
  4. Системы непосредственного впрыска топлива имеют высокую стоимость, но и надёжность у них завидная. Экономичность и мощность двигателя на высоком уровне, регулировка подачи топливовоздушной смеси максимально точная. Мотор может быстро изменить режим работы. Электромагнитные форсунки устанавливаются в ГБЦ, смесь распыляется непосредственно в камеру сгорания цилиндра (отсюда и название системы).

В конструкции отсутствует впускной коллектор и клапан. Реализация конструкции довольно сложная, так как в ГБЦ на каждый цилиндр есть отверстия под свечи, клапаны (2 или 4, в зависимости от типа мотора). Элементарно не хватает места для установки форсунки.

Изначально такие системы впрыска устанавливались на габаритные и мощные двигатели, на бюджетных их не встретить. И ремонт таких систем выливается в круглую сумму.

Система датчиков инжекторных двигателей

Без этих компонентов работа системы впрыска топлива невозможна. Именно датчики сообщают блоку управления всю информацию, которая необходима для работы исполнительных устройств в нормальном режиме. Неисправности системы питания инжекторного двигателя по большей части вызывают именно датчики, так как они могут неверно производить замеры.

  1. Датчик расхода воздуха устанавливается после воздушного фильтра, так как в конструкции имеется дорогостоящая платиновая нить, которая при попадании мелких посторонних частиц может засоряться, отчего показания окажутся неверными. Датчик считает, какое количество воздуха проходит через него. Понятно, что взвесить воздух не представляется возможным, да и объем его измерить проблематично. Суть работы заключается в том, что внутри пластиковой трубки находится платиновая нить. Она нагревается до рабочей температуры (более 600º, именно это значение закладывается в ЭБУ). Поток воздуха охлаждает нить, блок управления фиксирует температуру и, исходя из этого, вычисляет количество воздуха.
  2. Датчик абсолютного давления необходим для более точного снятия показаний о количестве потребляемого двигателем воздуха. Состоит из 2 камер, одна из которых герметична и внутри у неё вакуум. Вторая камера соединена с впускным коллектором. В последнем при впуске разрежение. Между камерами устанавливается диафрагма с пьезоэлементом, который вырабатывает небольшое напряжение во время изменения давления. Это значение напряжения поступает на вход блока управления.
  3. Датчик положения коленвала располагается рядом со шкивом генератора. Если присмотреться, то можно увидеть, что на шкиве есть зубья, причём они расположены на одинаковом расстоянии друг от друга. Суммарное число зубьев — 60, оси соседних расположены на расстоянии 6º. Но если присмотреться ещё внимательнее, то можно увидеть, что 2-х не хватает. Этот промежуток необходим, чтобы датчик фиксировал положение коленвала максимально точно. Датчик вырабатывает напряжение, которое тем больше, чем выше частота вращения.
  4. Датчик фаз (распредвала) работает на эффекте Холла. В конструкции есть диск с вырезанным сегментом и катушка. При вращении диска вырабатывается напряжение. Но в момент, когда прорезь находится над чувствительным элементом, напряжение снижается до 0. В этот момент первый цилиндр находится в ВМТ на такте сжатия. Благодаря датчику фаз точно подаётся искра на свечу и открывается своевременно форсунка.
  5. Датчик детонации расположен на блоке ДВС между 2 и 3 цилиндрами (чётко посередине). Работает на пьезоэффекте — при наличии вибрации происходит генерирование напряжения. Чем сильнее вибрация, тем выше уровень сигнала. Блок управления при помощи датчика изменяет угол опережения зажигания.
  6. Датчик дроссельной заслонки представляет собой переменный резистор, на который подаётся напряжение 5 В. В зависимости от того, в каком положении находится заслонка, напряжение уменьшается. Иногда случаются поломки — в начальном положении показания датчика прыгают. Стирается резистивный слой, ремонт невозможен, эффективнее установить новый.
  7. Датчик температуры ОЖ, от него зависит качество воспламенения топливовоздушной смеси. С его помощью не только происходит коррекция угла опережения зажигания, но и включение электровентилятора.
  8. Лямбда-зонд расположен в системе выпуска отработанных газов. В современных системах, которые удовлетворяют последним экологическим стандартам, можно встретить 2 датчика кислорода. Лямбда-зонд отслеживает количество кислорода в выхлопных газах. У него есть внешняя часть и внутренняя. За счёт напыления из драгметалла можно оценить количество кислорода в выхлопных газах. Внешняя часть датчика «дышит» чистым воздухом. Показания передаются на блок управления и сравниваются. Эффективные замеры возможны только при достижении высоких температур (свыше 400º), поэтому часто устанавливают подогреватель, чтобы даже в момент начала работы двигателя не наблюдалось перебоев.

Исполнительные механизмы инжекторных систем

По названию видно, что эти устройства выполняют то, что им скажет блок управления. Все сигналы от датчиков анализируются, сравниваются с топливной картой (огромной схемой работы при тех или иных условиях), после чего подаётся команда на исполнительный механизм. Следующие исполнительные механизмы входят в состав инжекторной системы:

  1. Электрический бензонасос, установленный в баке. Он нагнетает в рампу бензин под давлением около 3,5 Мпа. Вот какое давление в топливной системе должно быть, при нем распыление смеси окажется наиболее качественным. При повышении оборотов коленвала увеличивается расход бензина, нужно его больше нагнетать в рампу, чтобы удерживать давление на уровне. В нижней части насосов устанавливается фильтр, который нужно менять хотя бы раз в 30000 км пробега.
  2. Электромагнитные форсунки устанавливаются в рампе и предназначены для подачи топливовоздушной смеси в камеры сгорания. Чем дольше открыт клапан форсунки, тем больше смеси поступит в камеру сгорания — именно такой принцип дозирования лежит в основе.
  3. Дроссельный механизм приводится в движение педалью из салона. Но в последние годы набирает популярность электронная педаль газа. Это означает, что вместо тросика используется потенциометр на педали и небольшой электродвигатель на дроссельной заслонке.
  4. Регулятор холостого хода предназначен для контроля количества воздуха, поступающего в топливную рампу при полностью закрытой дроссельной заслонке. На карбюраторных моторах аналогичную функцию выполняет «подсос». Несмотря на то, что топливная система отличается, суть работы остаётся той же — подача смеси и её сгорание.
  5. Модуль зажигания — короб, в котором находится 4 высоковольтные катушки. Хорошая конструкция, но крайне ненадёжная — высоковольтные провода имеют свойство портиться. Намного эффективнее окажется использование для каждой свечи отдельной катушки, выполненной в виде наконечника.

Работа двигателя с инжекторной системой впрыска

А теперь можно рассмотреть и принцип работы системы питания инжекторного двигателя. При включении зажигания происходит переход в рабочий режим всех механизмов и устройств. Первым делом насос нагнетает бензин в рампу до минимального давления, которого хватит для запуска.

А дальше все ждут, когда провернётся коленвал, и с его датчика пойдёт сигнал на блок управления о положении поршней в цилиндрах. Одновременно с этим датчик фаз выдаёт сигнал о том, какой такт совершается. После анализа данных блок управления даёт команду на форсунки (в зависимости от того, в каком цилиндре происходит впуск).

При вращении коленвала постоянно снимаются данные с датчиков и, исходя из них, происходит открывание нужных электромагнитных форсунок на определённый промежуток времени. Смесь воспламеняется, отработанные газы выходят через выпускной коллектор. По тому, какое содержание кислорода в них, можно судить о качестве сгорания топлива.

Если содержание кислорода большое, то смесь сгорает не до конца. Блок управления производит корректировку угла опережения зажигания, чтобы добиться наилучших показаний.

Но вот во время прогрева некоторые датчики не влияют на работу системы управления. Это датчики расхода воздуха, детонации и абсолютного давления. При достижении рабочей температуры включаются они в работу. Причина — во время прогрева невозможно соблюсти все условия, в частности, соотношение бензина и воздуха. Уровень СО в выхлопных газах тоже будет зашкаливать, поэтому контроль всех этих параметров не следует производить.

Принципы работы топливного датчика

Доброго дня всем добрым людям. В статье можно узнать принцип работы топливного датчика. Типы устройств датчика и принцип его работы.

В системе автомобиля нет ни одной малозначимой детали. Все они отвечают за безопасность передвижения транспортного средства. Именно поэтому важно внимательно следить за техническим состоянием машины, по надобности приобретать лишь качественные автозапчасти.

Один из важнейших элементов, сигнализирующих автомобилисту о состоянии машины, — это датчик топлива. Датчик находится непосредственно в топливном баке и показывает уровень топлива. Датчик работает в системе с указателем уровня топлива, который размещен на панели приборов.

Типы устройств датчика топлива

1.Потенциометрический

Датчик, установленный на современных автомобилях, его преимущество состоит в довольно ожидаемых характеристиках: незатейливая конструкция, точные измерительные показатели расхода топлива, низкая стоимость.

Однако подвижные контакты, входящие в конструкцию, требуют пристального внимания к себе, поскольку подвержены износу и окислению, который устраняется простым ремонтом или заменой.

Потенциометрический датчики бывают двух типов — рычажные и трубчатые. Датчиком уровня топлива в их будет поплавок, находящийся на поверхности жидкости.

2.Бесконтактные

Например, неактивный магнитный датчик положения (MAPPS). Появление данной модели обусловлено популярностью новых видов топлива для двигателей внутреннего сгорания (этанол, биодизель, метанол).

В данном случае, контактный датчик будет неэффективен и может неправильно отображать данные, к тому же, особенности среды ускорят износ контактирующей поверхности.

Отличительной чертой такого датчика будет герметичная изоляция чувствительного элемента, хотя он все также выполнен в виде поплавка, соединенном с рычагом с помощью магнита, который перемещается по сектору. Уровень топлива определяется с помощью особого сигнала, генерируемого магнитным полем.

Принцип работы топливного датчика

Он достаточно прост — датчик реагирует на уровень топлива, и каждому объему соответствует определенный сигнал. Так сконструирован стандартный датчик. Современные модели более сложные и адаптированы к пространству кузова.

Стоить знать одну важную особенность всех баков. Уровни будут отображены только в том случае, когда топливо опустится ниже конкретной грани. То есть, пройдя нижнюю черту каждого уровня, станет видно количество топлива.

К тому же долгое время датчик будет показывать, что топливный бак полон, поскольку черта-индикатор еще не будет пройдена, а расход уже начнется. Поэтому стоит быть готовым к тому, что все датчики имеют определенную погрешность показателя. Так случается из-за колебания уровня топлива и особенностей геометрии бака.

Типы сигнала датчика

1.Аналоговый

Показывает изменение напряжения на потенциометре, и, к сожалению, они имеют более высокую погрешность измерения. Из-за этого от них все чаще отказываются производители автомобилей.

2.Цифровой

Более совершенный сигнал, который способен преобразовать аналоговый показатель, при этом выравнивая погрешность измерения, о которой было сказано ранее. На сегодня датчики с цифровым сигналом считаются наиболее точными, а погрешность наблюдается при начальном физическом измерении топлива.

Исправность данного элемента крайне важна, поскольку сбои в его работе могут повлечь за собой некорректное понимание работы автомобиля. В свою очередь это повлечет неисправности, которые могут потребовать серьезной диагностики и, возможно, дорогостоящего ремонта.

Поэтому важно следить за состоянием датчика, и при необходимости покупать качественную ему замену.

Датчик уровня топлива: виды, принцип работы, устройство — Dodge Caliber, 2.0 л., 2008 года на DRIVE2

Датчик уровня топлива (ДУТ) — функциональное устройство топливной системы автомобиля, единственным предназначением которого является определение уровня и объема горючего (дизтоплива, бензина, солярки, масла) в топливном баке.

Датчик располагается в баке для подачи топлива, а указатель топливного уровня выводится на приборной панели в салоне автомобиля. Подобные датчики контроля отличаются очень низкой погрешностью (не более 1%), их конструкция не имеет движущихся и быстро изнашиваемых элементов.

ДУТ также могут применяться в системах контроля заправок и слива топлива, а также в системах проведения спутникового мониторинга автомобилей.

Как устроен датчик уровня топлива:Современный датчик уровня топлива — это не что иное, как датчик-потенциометр перемещения. Подобное устройство обладает рядом преимуществ, таких как: доступность, надежность и простота конструкции датчика; высокая точность проводимых измерений и низкая цена. Среди недостатков стоит выделить наличие отдельных элементов, восприимчивых к окислению и частым поломкам.

В топливной системе автомобиля могут использоваться датчики-потенциометры двух видов – трубчатые и рычажные. Основным элементом конструкции подобных датчиков является т.н. поплавок, для изготовления которого может использоваться тонколистовой металл, полая пластмасса и пенопласт.

Рычажный топливный датчик

В таком типе устройства поплавок соединяется с контактом датчика при помощи небольшого рычага, изготовленного из металла. Рычажный датчик представляет собой сектор, который разделен на полосы металла резистивного типа. Основой конструкции являются надежные износостойкие резисторы с толстой пленкой.

ДУТ рычажного типа

Подобный датчик может устанавливаться как отдельно, так и в блоке, который отвечает за подачу топлива. Блок может состоять из ТН и заборника топлива.

Благодаря своей исключительной универсальности рычажные датчики могут применяться практически на всех топливных баках.

Трубчатый топливный датчик

В данном типе датчика поплавок двигается внутри полой трубки. Параллельно установлены и провода, создающие сопротивление, на концах которых имеются контактные кольца для поплавка. Трубчатые датчики отличаются высоким уровнем устойчивости к различным колебаниям ТС.

ДУТ трубчатого типа

ДВС, которые применяют новые виды топлива, оснащаются специальными бесконтактными ДУТ. Наиболее известным из таких датчиков является магнитный датчик неактивный (MAPPS).

Основной элемент подобного устройства является закрытым, что полностью предотвращает его непосредственный контакт с горючей смесью. Поплавок в магнитном датчике соединяется с рычагом при помощи магнита (отсюда и название).

Передвижение магнита осуществляется исключительно по сектору, на котором устанавливаются металлические пластины, имеющие разную длину. Сформированное магнитное поле создает электрический сигнал на поверхности пластин, который определяет существующий уровень топливной смеси в баке.

Как работает датчик уровня топливаПринцип действия ДУТ основан на следующем – для определенного значения уровня горючего в баке создается собственный сигнал на датчике.

Замеры уровня топлива поплавком осуществляются только при снижении уровня ТС в баке. При этом изначально указатель уровня показывает на заполнение бака, и только спустя некоторое время происходит плавное снижение указателя. В этот временной интервал датчики уровня могут допускать некоторую погрешность в измерении, которая зачастую не превышает 1%.

В большинстве топливных систем устанавливаются датчики уровня с цифровым и аналоговым сигналом. Датчик аналогового типа определяет степень изменения напряжения на потенциометре. Подобные датчики дают большую степень погрешности в измерениях в сравнении со своими цифровыми аналогами.

Датчик цифрового типа предназначен для преобразования аналогового сигнала в соответствующую цифру с дальнейшей корректировкой и выравниванием значения, с учетом возможных колебаний уровня ТС. Датчики данного типа отличаются высокой точностью, с допустимым уровнем погрешности в 0,5%.

Шпаргалка для автовладельца: топливная система и ее составляющие — DRIVE2

Топливная система – это комплект деталей и устройств, задача которых заключается в хранении, очистке и подаче топлива к мотору авто.

Основными составляющими топливной системы являются:

• Топливный бак – резервуар для горючего.• Магистрали или топливопроводы – соединительные элементы.• Топливный насос – отвечает за подачу топлива под давлением.

• Топливные фильтры – очищают горючее от посторонних предметов, примесей, частиц грязи.

Также в топливную систему входят:

• Дроссельная заслонка – дозатор воздуха, который используется для приготовления горючей смеси.• Блок управления дросселем.• Контроллеры – блок управления двигателем.

• Педаль акселератора – дозатор топлива, поступающего в цилиндры.

В топливной системе автомобиля есть семь основных датчиков:

• Давления подачи топлива.• Давления в топливном баке.• Положения педали газа.• Холостого хода.• Температуры горючего.• Содержания воды в топливе.

• Положения дроссельной заслонки.

Сроки диагностики и эксплуатации деталей

Отметим сразу, что составляющие топливной системы должны своевременно заменяться. Это важное условие корректного функционирования мотора и, как следствие, хорошей динамики авто.Топливные фильтры. В зависимости от качества топлива их ресурс рассчитан на 20-30 тысяч километров пробега.

Топливный насос. Качественное устройство прослужит не менее 200 тысяч километров пробега.Дроссельная заслонка. Данная деталь не имеет определенного срока службы. Он полностью зависит от производителя. Чтобы увеличить ее ресурс и отложить замену, следует очищать заслонку.

Контроллеры и потенциометр должны диагностироваться в соответствии с указаниями в мануале вашего авто. Ремонту они не подлежат, поэтому при поломке требуется замена.

Педаль газа. Эта деталь редко выходит из строя, но, тем не менее, нуждается в регулярной диагностике. Как часто? При появлении первых признаков не исправности, а также в рамках ТО, указанного в технической документации авто.

Магистрали и топливный бак. Данные составляющие не диагностируются. Частая неисправность – механические повреждения труб, которая даст о себе знать увеличенным расходом топлива и некорректной работой мотора. В зависимости от масштаба повреждений подлежат ремонту.

Датчики топливной системы. Несмотря на распространенные мифы, данные устройства не подвержены быстрому износу и частым поломкам. При выходе из строя – заменить новыми.

Основные неисправности топливной системы:• Нарушение функционирования системы впрыска топлива.• Некорректная работа топливного насоса.• Засорение топливных фильтров.• Механические повреждения топливопроводов.• Разгерметизация системы.• Нарушение смесеобразования.• Некорректная работа педали газа.

О неисправностях сообщат следующие признаки:

• Ухудшение динамики авто.• Нестабильное функционирование мотора.• Увеличенный расход топлива.• Запах топлива и следы подтеков.• Проваливание педали газа в пол или ее невозвращение в исходное положение.

Каковы основные причины неисправностей топливной системы:

• Некачественное горючее.• Не соблюдение сроков замены деталей.• Загрязнение системы.• Силовое воздействие.• Выработка ресурса.

• Износ уплотнителей.

Вид ремонта топливной системы определяется в зависимости от места поломки и характера неисправности. Заменить топливный фильтр на большинстве авто можно самостоятельно, но установку потенциометра, контроллеров, дросселя и других устройств следует доверить мастерам.

Топливная система автомобиля

Для работы двигателя необходимо топливо, которое должно в определенные моменты подаваться в цилиндры — эту задачу решают топливные системы (или системы подачи топлива). О том, как устроены топливные системы и какие отличительные черты имеют системы подачи топлива различных двигателей — читайте в этой статье.

Назначение и общее устройство топливной системы

Топливная система автомобиля (или система подачи топлива) — система, предназначенная для подачи топлива (бензина или дизельного топлива) из топливного бака в двигатель (точнее – в карбюратор или форсунки). Также эта система обеспечивает хранение топлива и его очистку перед подачей в двигатель.

Независимо от типа, любая топливная система содержит несколько основных компонентов:

- Топливный бак; - Система топливопроводов; - Топливный насос; - Топливный фильтр (или фильтры);

- Устройство образования топливно-воздушной смеси или устройства впрыска топлива в цилиндры.

Топливный бак. Это резервуар для хранения топлива. Бак современных автомобилей — это довольно сложная система, которая содержит несколько компонентов: непосредственно резервуар, горловина для заливки топлива, датчик уровня топлива, топливный насос (однако во многих системах насос устанавливается в моторном отсеке) и другие. С баком также сообщается система улавливания паров топлива, которая содержит сепаратор, топливопроводы, адсорбер и несколько клапанов.

Топливопроводы. Это трубки, которые осуществляют подачу топлива от одних компонентов к другим. Подача топлива из бака осуществляется подающим топливопроводом, а возврат излишков топлива из карбюратора, форсунок или ТНВД (в дизельном двигателе) производится через сливные трубопроводы.

Топливный насос. Это устройство, которое подает топливо из бака к двигателю. В системах впрыска топлива насос создает высокое давление. В дизельных моторах два насоса — низкого и высокого давления (подкачивающий насос может быть и в инжекторных двигателях). Сегодня чаще всего применяются электрические насосы, однако в дизелях используются традиционные механические плунжерные ТНВД.

Топливные фильтры. Обычно их два — грубой и тонкой очистки. Фильтр грубой очистки — это просто несколько тонких металлических сеточек, установленных в топливном баке. Фильтр тонкой очистки устроен более сложно, он устанавливается перед карбюратором, рампой или ТНВД. Фильтры обеспечивают очистку топлива от разнообразных загрязнений, пыли и посторонних твердых частиц.

Устройство образования топливно-воздушной смеси — это карбюратор, в который подается бензин и воздух, где они смешиваются и через дроссельную заслонку подаются во впускной коллектор двигателя. В инжекторных и дизельных двигателях воздух подается отдельным дроссельным узлом, а образование горючей смеси происходит непосредственно в цилиндре.

Устройства впрыска топлива. Это форсунки в дизельных и инжекторных бензиновых двигателях. Однако в дизельных моторах (а также и в инжекторах с непосредственным впрыском) форсунки установлены непосредственно в головках цилиндров, а в инжекторных моторах — во впускных коллекторах.

Также в топливную систему современных автомобилей входит блок управления, который осуществляет управление подачей топлива, образованием топливно-воздушной смеси и изменением режимов работы двигателя в зависимости от нагрузки и других условий. Блок управления работает на основе показаний от многочисленных датчиков, установленных в различных узлах двигателя и других систем автомобиля.

На сегодняшний день существует два основных типа топливных систем — бензиновых и дизельных двигателей. О каждой из них нужно рассказать более подробно.

Топливные системы бензиновых двигателей

Исторически бензиновые двигатели внутреннего сгорания были первыми, и уже в конце XIX века были разработаны первые топливные системы на основе карбюраторов. Однако с 1950-х годов в автомобилях стали использоваться иные системы — инжекторные, которые к сегодняшнему дню устанавливаются практически на всех новых легковых автомобилях.

Таким образом, можно выделить два принципиально разных типа систем подачи топлива бензиновых двигателей:

- Карбюраторные; - Инжекторные.

Они имеют отличия в устройстве и принципе работы.

Карбюраторная система подачи топлива

Главная особенность топливной системы этого типа — наличие карбюратора, в котором производится смешивание воздуха и топлива, то есть образование топливно-воздушной смеси. Карбюратор устанавливается на впускном коллекторе двигателя, к нему подводится топливо, которое распыляется с помощью жиклера и смешивается с воздухом. Образовавшаяся смесь через дроссельную заслонку подается в коллектор (а через него — к цилиндрам), а управлением положения заслонки осуществляется управление работой двигателя.

В системе подачи топлива карбюраторных двигателей бензонасос создает малое давление, которое необходимо лишь для закачки топлива из бака в карбюратор, а подача горючей смеси в цилиндр осуществляется «самотеком» из-за понижения давления в цилиндре при опускании поршня.

Инжекторная система подачи топлива (система впрыска топлива)

Система подачи топлива инжекторных двигателей имеет следующие принципиальные отличия от топливной системы карбюраторных моторов:

- Топливо из бака подается на топливную рампу, к которой подключены форсунки; - Воздух в камеры сгорания подается через дроссельный узел;

- Топливный насос создает достаточно высокое давление, которое необходимо для обеспечения впрыска топлива форсунками в камеры сгорания.

Также в системах впрыска обязательно присутствует блок управления, который как раз и управляем впрыском, в зависимости от режима работы обеспечивает необходимый состав топливно-воздушной смеси и т.д.

Существует два основных типа инжекторных двигателей:

- Моновпрыск (одна форсунка на все цилиндры, сейчас почти не используется); - Распределенный впрыск (индивидуальная форсунка для каждого цилиндра, существует несколько разновидностей, отличающихся режимом работы форсунок).

Принцип работы топливной системы инжекторного двигателя прост. Топливо из бака с помощью насоса подается на топливную рампу, в которой топливо всегда находится под постоянным высоким давлением (давление устанавливается регулятором давления). С рампой сообщаются форсунки, через которые топливо в определенные промежутки времени распыляется в камере сгорания. Одновременно с подачей топлива в камеру сгорания поступает и воздух — здесь происходит образование топливно-воздушной смеси. Форсунки управляются блоком управления, информация о режимах работы всей системы поступает от множества датчиков.

Топливные системы дизельных двигателей

Система подачи топлива дизельного двигателя имеет следующие особенности:

- Подача топлива в камеры сгорания осуществляется форсунками под высоким давлением (за счет которого происходит воспламенение топливно-воздушной смеси); - Давление создается специальным топливным насосом высокого давления (ТНВД).

Таким образом, в топливной системе дизеля присутствует два насоса — низкого и высокого давления. Насос низкого давления (часто его называют подкачивающим насосом) обеспечивает подачу топлива к ТНВД, а ТНВД — подачу топлива в форсунки.

Принцип работы топливной системы дизельного двигателя сводится к следующему: топливо с помощью подкачивающего насоса подается к ТНВД (попутно проходя через фильтр тонкой очистки), откуда под высоким давлением поступает в установленные в головках цилиндров форсунки. Форсунки в определенные моменты открываются и распыляют топливо в камере сгорания, в которые через отдельный клапан (или клапаны) подается очищенный воздух. Излишки топлива от ТНВД и форсунок через трубки отлива топлива возвращаются в топливный бак.

Еще в этом разделе

Инжекторная система питания

На всех современных автомобилях с бензиновыми моторами используется инжекторная система подачи топлива, поскольку она является более совершенной, чем карбюраторная, несмотря на то, что она конструктивно более сложная.

Инжекторный двигатель – не новь, но широкое распространение он получил только после развития электронных технологий. Все потому, что механически организовать управление системой, обладающей высокой точностью работы было очень сложно. Но с появлением микропроцессоров это стало вполне возможно.

Инжекторная система отличается тем, что бензин подается строго заданными порциями принудительно в коллектор (цилиндр).

Устройство ДВС

Основным достоинством, которым обладает инжекторная система питания, является соблюдение оптимальных пропорций составных элементов горючей смеси на разных режимах работы силовой установки. Благодаря этому достигается лучший выход мощности и экономичное потребление бензина.

Устройство системы

Инжекторная система подачи топлива состоит из электронной и механической составляющих. Первая контролирует параметры работы силового агрегата и на их основе подает сигналы для срабатывания исполнительной (механической) части.

К электронной составляющей относится микроконтроллер (электронный блок управления) и большое количество следящих датчиков:

  • лямбда-зонд;
  • положения коленвала;
  • массового расхода воздуха;
  • положения дроссельной заслонки;
  • детонации;
  • температуры ОЖ;
  • давления воздуха во впускном коллекторе.

Датчики системы инжектора

На некоторых авто могут иметься еще несколько дополнительных датчиков. У всех у них одна задача – определять параметры работы силового агрегата и передавать их на ЭБУ

Что касается механической части, то в ее состав входят такие элементы:

  • бак;
  • электрический топливный насос;
  • топливные магистрали;
  • фильтр;
  • регулятор давления;
  • топливная рампа;
  • форсунки.

Простая инжекторная система подачи топлива

Как все работает

Теперь рассмотрим принцип работы инжекторного двигателя отдельно по каждой составляющей. С электронной частью, в целом, все просто. Датчики собирают информацию о скорости вращения коленчатого вала, воздуха (поступившего в цилиндры, а также остаточной его части в отработанных газах), положения дросселя (связанного с педалью акселератора), температуры ОЖ. Эти данные датчики передают постоянно на электронный блок, благодаря чему и достигается высокая точность дозировки бензина.

Поступающую с датчиков информацию ЭБУ сравнивает с данными, внесенными в картах, и уже на основе этого сравнения и ряда расчетов осуществляет управление исполнительной частью.В электронный блок внесены так называемые карты с оптимальными параметрами работы силовой установки (к примеру, на такие условия нужно подать столько-то бензина, на другие – столько-то).

Первый инжекторный двигатель Toyota 1973 года

Чтобы было понятнее, рассмотрим более подробно алгоритм работы электронного блока, но по упрощенной схеме, поскольку в действительности при расчете используется очень большое количество данных. В целом, все это направлено на высчитывание временной длины электрического импульса, который подается на форсунки.

Поскольку схема – упрощенная, то предположим, что электронный блок ведет расчеты только по нескольким параметрам, а именно базовой временной длине импульса и двум коэффициентам – температуры ОЖ и уровне кислорода в выхлопных газах. Для получения результата ЭБУ использует формулу, в которой все имеющиеся данные перемножаются.

Для получения базовой длины импульса, микроконтроллер берет два параметра – скорость вращения коленчатого вала и нагрузку, которая может высчитываться по давлению в коллекторе.

К примеру, обороты двигателя составляют 3000, а нагрузка 4. Микроконтроллер берет эти данные и сравнивает с таблицей, внесенной в карту. В данном случае получаем базовую временную длину импульса 12 миллисекунд.

Но для расчетов нужно также учесть коэффициенты, для чего берутся показания с датчиков температуры ОЖ и лямбда-зонда. К примеру, температура составляется 100 град, а уровень кислорода в отработанных газах составляет 3. ЭБУ берет эти данные и сравнивает с еще несколькими таблицами. Предположим, что температурный коэффициент составляет 0,8, а кислородный – 1,0.

Получив все необходимые данные электронный блок проводит расчет. В нашем случае 12 множиться на 0,8 и на 1,0. В результате получаем, что импульс должен составлять 9,6 миллисекунды.

Описанный алгоритм – очень упрощенный, на деле же при расчетах может учитываться не один десяток параметров и показателей.

Поскольку данные поступают на электронный блок постоянно, то система практически мгновенно реагирует на изменение параметров работы мотора и подстраивается под них, обеспечивая оптимальное смесеобразование.

Стоит отметить, что электронный блок управляет не только подачей топлива, в его задачу входит также регулировка угла зажигания для обеспечения оптимальной работы мотора.

Теперь о механической части. Здесь все очень просто: насос, установленный в баке, закачивает в систему бензин, причем под давлением, чтобы обеспечить принудительную подачу. Давление должно быть определенным, поэтому в схему включен регулятор.

По магистралям бензин подается на рампу, которая соединяет между собой все форсунки. Подающийся от ЭБУ электрический импульс приводит к открытию форсунок, а поскольку бензин находится под давлением, то он через открывшийся канал просто впрыскивается.

Виды и типы инжекторов

Инжекторы бывают двух видов:

  1. С одноточечным впрыском. Такая система является устаревшей и на автомобилях уже не используется. Суть ее в том, что форсунка только одна, установленная во впускном коллекторе. Такая конструкция не обеспечивала равномерного распределения топлива по цилиндрам, поэтому ее работа была сходной с карбюраторной системой.
  2. Многоточечный впрыск. На современных авто используется именно этот тип. Здесь для каждого цилиндра предусмотрена своя форсунка, поэтому такая система отличается высокой точностью дозировки. Устанавливаться форсунки могут как во впускной коллектор, так и в сам цилиндр (инжекторная система непосредственного впрыска).

На многоточечной инжекторной системе подачи топлива может использовать несколько типов впрыска:

  1. Одновременный. В этом типе импульс от ЭБУ поступает сразу на все форсунки, и они открываются вместе. Сейчас такой впрыск не используется.
  2. Парный, он же попарно-параллельный. В этом типе форсунки работают парами. Интересно, что только одна из них подает топливо непосредственно в такте впуска, у второй же такт не совпадает. Но поскольку двигатель – 4-тактный, с клапанной системой газораспределения, то несовпадение впрыска по такту на работоспособность мотора влияния не оказывает.
  3. Фазированный. В этом типе ЭБУ подает сигналы на открытие для каждой форсунки отдельно, поэтому впрыск происходит с совпадением по такту.

Примечательно, что современная инжекторная система подачи топлива может использовать несколько типов впрыска. Так, в обычном режиме используется фазированный впрыск, но в случае перехода на аварийное функционирование (к примеру, один из датчиков отказал), инжекторный двигатель переходит на парный впрыск.

Обратная связь с датчиками

Одним из основных датчиков, на показаниях которого ЭБУ регулирует время открытия форсунок, является лямбда-зонд, установленный в выпускной системе. Этот датчик определяет остаточное (не сгоревшее) количество воздуха в газах.

Эволюция датчика лямбда-зонд от Bosch

Благодаря этому датчику обеспечивается так называемая «обратная связь». Суть ее заключается вот в чем: ЭБУ провел все расчеты и подал импульс на форсунки. Топливо поступило, смешалось с воздухом и сгорело. Образовавшиеся выхлопные газы с не сгоревшими частицами смеси выводится из цилиндров по системе отвода выхлопных газов, в которую установлен лямбда-зонд. На основе его показаний ЭБУ определяет, правильно ли были проведены все расчеты и при надобности вносит корректировки для получения оптимального состава. То есть, на основе уже проведенного этапа подачи и сгорания топлива микроконтроллер делает расчеты для следующего.

Стоит отметить, что в процессе работы силовой установки существуют определенные режимы, при которых показания кислородного датчика будут некорректными, что может нарушить работу мотора или требуется смесь с определенным составом. При таких режимах ЭБУ игнорирует информацию с лямбда-зонда, а сигналы на подачу бензина он отправляет, исходя из заложенной в карты информации.

На разных режимах обратная связь работает так:

  • Запуск мотора. Чтобы двигатель смог завестись, нужна обогащенная горючая смесь с увеличенным процентным содержанием топлива. И электронный блок это обеспечивает, причем для этого он использует заданные данные, и информацию от кислородного датчика он не использует;
  • Прогрев. Чтобы инжекторный двигатель быстрее набрал рабочую температуру ЭБУ устанавливает повышенные обороты мотора. При этом он постоянно контролирует его температуру, и по мере прогрева корректирует состав горючей смеси, постепенно ее обедняя до тех пор, пока состав ее не станет оптимальным. В этом режиме электронный блок продолжает использовать заданные в картах данные, все еще не используя показания лямбда-зонда;
  • Холостой ход. При этом режиме двигатель уже полностью прогрет, а температура выхлопных газов – высокая, поэтому условия для корректной работы лямбда-зонда соблюдаются. ЭБУ уже начинает использовать показания кислородного датчика, что позволяет установить стехиометрический состав смеси. При таком составе обеспечивается наибольший выход мощности силовой установки;
  • Движение с плавным изменением оборотов мотора. Для достижения экономичного расхода топлива при максимальном выходе мощности, нужна смесь со стехиометрическим составом, поэтому при таком режиме ЭБУ регулирует подачу бензина на основе показания лямбда-зонда;
  • Резкое увеличение оборотов. Чтобы инжекторный двигатель нормально отреагировал на такое действие, нужна несколько обогащенная смесь. Чтобы ее обеспечить, ЭБУ использует данные карт, а не показания лямбда-зонда;
  • Торможение мотором. Поскольку этот режим не требует выхода мощности от мотора, то достаточно, чтобы смесь просто не давала остановиться силовой установке, а для этого подойдет и обедненная смесь. Для ее проявления показаний лямбда-зонда не нужно, поэтому ЭБУ их не использует.

Как видно, лямбда-зонд хоть и очень важен для работы системы, но информация с него используется далеко не всегда.

Напоследок отметим, что инжектор хоть и конструктивно сложная система и включает множество элементов, поломка которых сразу же сказывается на функционировании силовой установки, но она обеспечивает более рациональный расход бензина, а также повышает экологичность автомобиля. Поэтому альтернативы этой системе питания пока нет.

Датчик уровня топлива: виды, принцип работы, устройство

Датчик уровня топлива (ДУТ) - функциональное устройство топливной системы автомобиля, единственным предназначением которого является определение уровня и объема горючего (дизтоплива, бензина, солярки, масла) в топливном баке.

Датчик располагается в баке для подачи топлива, а указатель топливного уровня выводится на приборной панели в салоне автомобиля. Подобные датчики контроля отличаются очень низкой погрешностью (не более 1%), их конструкция не имеет движущихся и быстро изнашиваемых элементов.

ДУТ также могут применяться в системах контроля заправок и слива топлива, а также в системах проведения спутникового мониторинга автомобилей.

Как устроен датчик уровня топлива

Современный датчик уровня топлива  - это не что иное, как датчик-потенциометр перемещения. Подобное устройство обладает рядом преимуществ, таких как: доступность, надежность и простота конструкции датчика; высокая точность проводимых измерений и низкая цена. Среди недостатков стоит выделить наличие отдельных элементов, восприимчивых к окислению и частым поломкам.

В топливной системе автомобиля могут использоваться датчики-потенциометры двух видов – трубчатые и рычажные. Основным элементом конструкции подобных датчиков является т.н. поплавок, для изготовления которого может использоваться тонколистовой металл, полая пластмасса и пенопласт.

Рычажный топливный датчик

В таком типе устройства поплавок соединяется с контактом датчика при помощи небольшого рычага, изготовленного из металла. Рычажный датчик представляет собой сектор, который разделен на полосы металла резистивного типа. Основой конструкции являются надежные износостойкие резисторы с толстой пленкой.

Подобный датчик может устанавливаться как отдельно, так и в блоке, который отвечает за подачу топлива. Блок может состоять из ТН и заборника топлива.

Благодаря своей исключительной универсальности рычажные датчики могут применяться практически на всех топливных баках.

Трубчатый топливный датчик

В данном типе датчика поплавок двигается внутри полой трубки. Параллельно установлены и провода, создающие сопротивление, на концах которых имеются контактные кольца для поплавка. Трубчатые датчики отличаются высоким уровнем устойчивости к различным колебаниям ТС.

ДВС, которые применяют новые виды топлива, оснащаются специальными бесконтактными ДУТ. Наиболее известным из таких датчиков является  магнитный датчик неактивный (MAPPS).

Основной элемент подобного устройства является закрытым, что полностью предотвращает его непосредственный контакт с горючей смесью. Поплавок в магнитном датчике соединяется с рычагом при помощи магнита (отсюда и название).

Передвижение магнита осуществляется исключительно по сектору, на котором устанавливаются металлические пластины, имеющие разную длину. Сформированное магнитное поле создает электрический сигнал на поверхности пластин, который определяет существующий уровень топливной смеси в баке.

Как работает датчик уровня топлива

Принцип действия ДУТ основан на следующем – для определенного значения уровня горючего в баке создается собственный сигнал на датчике.

Замеры уровня топлива поплавком осуществляются только при снижении уровня ТС в баке. При этом изначально указатель уровня показывает на заполнение бака, и только спустя некоторое время происходит плавное снижение указателя. В этот временной интервал датчики уровня могут допускать некоторую погрешность в измерении, которая зачастую не превышает 1%.

В большинстве топливных систем устанавливаются датчики уровня с цифровым и аналоговым сигналом. Датчик аналогового типа определяет степень изменения напряжения на потенциометре. Подобные датчики дают большую степень погрешности в измерениях в сравнении со своими цифровыми аналогами.

Датчик цифрового типа предназначен для преобразования аналогового сигнала в соответствующую цифру с дальнейшей корректировкой и выравниванием значения, с учетом возможных колебаний уровня ТС. Датчики данного типа отличаются высокой точностью, с допустимым уровнем погрешности в 0,5%.


Смотрите также